共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study was conducted to establish the intracytoplasmic sperm injection (ICSI) method for in vitro fertilization and development in quail. The efficiency of fertilization of oocytes was compared 1) between spontaneous and premature ovulation and 2) among testicular round spermatids, elongated spermatids, and immature and mature spermatozoa. The oocytes were injected with a single spermatozoon or spermatid and cultured for 24 h. Cell division was histologically observed with hematoxylin-eosin (HE) and a nucleus-specific fluorescent dye (DAPI). Five of 30 (16.6%) and 4 of 30 (13.3%) oocytes injected with mature sperm were fertilized in the spontaneous and induced ovulation group, respectively. Those embryos showed development at stages II-VII. Half the number (three of six) of the oocytes injected with testicular spermatozoa were fertilized and developed to stages IV-VII, and two of five oocytes injected with elongated spermatids were fertilized and developed to stage VI. All ooocytes injected with round spermatids were unfertilized. The results demonstrate that intracytoplasmic injection of a single sperm into quail oocyte can activate the oocyte and lead to fertilization. Oocytes prematurely ovulated are capable of fertilizing with mature sperm as are those spontaneously ovulated. In addition, the results suggest that the testicular round spermatids may not possess sufficient oocyte-activating potency but that the elongated spermatids and immature spermatozoa are competent to participate in fertilization and early embryonic development in quail. 相似文献
2.
The objective of this study was to investigate the potential of swamp buffalo oocytes vitrified-warmed at the metaphase of the second meiotic cell division (M-II) stage to develop to the blastocyst stage after parthenogenetic activation (PA) or intracytoplasmic sperm injection (ICSI). In Experiment 1, we examined the effects of exposure time of oocytes to cryoprotectants (CPA) on their in vitro development after PA. In vitro matured (IVM) oocytes were placed in 10% dimethylsulfoxide (DMSO) + 10% ethylene glycol (EG) for 1 min and then exposed to 20% DMSO + 20% EG + 0.5 M sucrose for 30 s, 45 s or 60 s (1 min + 30 s, 1 min + 45 s and 1 min + 60 s groups, respectively). The oocytes were then exposed to warming solution (TCM199 HEPES + 20% FBS and 0.5M sucrose) for 5 min and then washed in TCM199 HEPES + 20% FBS for 5 min. IVM oocytes without CPA treatments served as a control group. The viability assessed by fluorescein diacetate (FDA) staining was 100% in all groups. The developmental rates after PA to the blastocyst stage between 1min+30s (16%) and control (26%) groups did not differ significantly, but they were significantly higher than those in 1 min + 45 s (10%) and 1 min + 60 s (2%) groups. In Experiment 2, we examined the effect of two CPA exposure times, 1 min + 30 s and 1 min + 45 s on the in vitro development after PA of oocytes vitrified by the microdrop method. The viabilities in vitrified 1 min + 30 s, 1 min + 45 s and the control (without CPA treatments) groups were not different (97%, 95% and 100%, respectively). The development of surviving oocytes to the blastocyst stage in the vitrified 1 min + 30 s group (8%) was significantly higher than that in the vitrified 1 min + 45 s group (4%) and significantly lower than those in control group (26%). In Experiment 3, we examined the effect of two CPA exposure times, 1 min + 30 s and 1 min + 45 s on in vitro development after ICSI of vitrified oocytes. Viabilities in vitrified oocytes among 1 min + 30 s, 1 min + 45 s and control groups were not different (96%, 91% and 100%, respectively). After ICSI, vitrified-warmed oocytes were activated and oocytes with the second polar body were cultured for 7 days. The development of ICSI oocytes to the blastocyst stage in the vitrified 1 min + 30 s group (11%) was significantly higher than that in the vitrified 1 min + 45 s (7%) group and significantly lower than those in control group (23%). In conclusion, our study demonstrated that the 1 min + 30 s CPA treatment regimen could yield the highest blastocyst formation rates after PA and ICSI for oocytes vitrified by the microdrop method. 相似文献
3.
《Cryobiology》2020
This work studies the effect of vitrification of in vitro matured (IVM) prepubertal goat oocytes on: 1) oocyte damage assessed by reactive oxygen species (ROS) level and apoptosis and 2) embryo development after Intracytoplasmic sperm injection (ICSI) and Parthenogenic Activation (PA). Oocytes were IVM in supplemented TCM-199 for 22–24 h. Control group oocytes matured during 24 h were directly used for the analysis after IVM. Vitrified/warmed IVM-oocytes were vitrified after 22 h of IVM in 15% ethylene glycol (EG), 15% dimethyl sulfoxide (Me2SO) and 0.5 M sucrose and after subjected to warming procedure. Oocyte ROS level was measured by staining denuded IVM-oocytes with 10 μM 2′7′ dichlorodihydrofluorescein diacetate. Apoptosis was analyzed by Annexin V (AV) Apoptosis Detection kit and Propidium iodide (PI) signal and oocytes were classified as: Live (AV− PI−), early apoptotic (AV+ PI−), dead non-apoptotic (AV− PI+) and necrotic (AV+ PI+). Developmental competence of vitrified/warmed oocytes was assessed by PA (5 min in 5 μM Ionomycin plus 4 h in 2 mM 6-Dimethylaminopurine), and by ICSI fertilization. Presumptive zygotes were in vitro cultured for 8 days in commercial media BO-IVC. Vitrified/warmed oocytes showed higher ROS levels (P < 0.0001), lower live oocytes (44 vs. 66%; P: 0.0025) and higher dead non-apoptotic oocytes (33 vs. 13% P: 0.023) compared to control. No differences were found on normal zygote formation (2 PN) (32 vs. 25%) or blastocyst development (0 vs. 4%) after ICSI fertilization. However, after PA, significant differences were found in cleavage rate (59 vs.78%; P < 0.0343) and blastocyst formation (1 vs. 25%; P < 0.0001). In conclusion, vitrification reduced oocyte competence by increasing dead oocytes and ROS levels. 相似文献
4.
We evaluated: (1) cleavage rate after IVF or intracytoplasmic sperm injection (ICSI) of in vivo- and in vitro-matured oocytes after vitrification (experiment 1); and (2) fetal development after transfer of resultant ICSI-derived embryos into recipients (experiment 2). In vivo-matured cumulus-oocyte complexes (COCs) were recovered from gonadotropin-treated donors at 24 h after LH treatment. In vitro-matured oocytes were obtained by mincing ovaries (from local veterinary clinics) and placing COCs into maturation medium for 24 h. Mature oocytes were denuded and cryopreserved in a vitrification solution of 15% DMSO, 15% ethylene glycol, and 18% sucrose. In experiment 1, for both in vivo- and in vitro-matured oocytes, cleavage frequencies after IVF of control and vitrified oocytes and after ICSI of vitrified oocytes were not different (P > 0.05). After vitrification, blastocyst development occurred only in IVF-derived, in vitro-matured oocytes. In experiment 2, 18 presumptive zygotes and four two-cell embryos derived by ICSI of vitrified in vitro-matured oocytes and 19 presumptive zygotes produced from seven in vivo- and 12 in vitro-matured oocytes were transferred by laparoscopy into the oviducts of two recipients, respectively. On Day 21, there were three fetuses in one recipient and one fetus in the other. On Days 63 and 66 of gestation, four live kittens were born. In vivo viability of zygotes and/or embryos produced via ICSI of vitrified oocytes was established by birth of live kittens after transfer to recipients. 相似文献
5.
《Cryobiology》2017
We evaluated the meiotic and developmental competence of GV-stage equine oocytes vitrified under different conditions. In a preliminary study, using dimethyl sulfoxide (D), ethylene glycol (EG) and sucrose (S) as cryoprotectants, the maturation rate was higher for cumulus-oocyte complexes (COCs) held overnight before vitrification (37%) than for those vitrified immediately (14%; P < 0.05). Thereafter, all COCs were held overnight before vitrification. In Experiment 1 we compared 1 min (1m) and 4 min (4m) exposure to vitrification and warming solutions; oocytes that subsequently matured were fertilized by ICSI. The maturation rate was similar between timing groups (29–36%), but was significantly lower than that for controls (73%). The 1m treatment yielded one blastocyst (11%), vs. 19% in controls. In Experiment 2, propylene glycol (PG) and trehalose (T) were also used. We compared two base solutions: M199 with 10% FBS (M199+), and 100% FBS; three cryoprotectant combinations: D-EG-S; PG-EG-S; and PG-EG-T; and two timings in vitrification solution: ∼30 s (30s) and 1 min (1m). The most effective treatment (FBS/PG-EG-T/30s) yielded 42% maturation, 80% cleavage and 1 blastocyst (10%), vs. 49%, 93% and 29%, respectively for controls (P > 0.1). In Experiment 3, we evaluated the toxicity of the M199/D-EG-S/1m and FBS/PG-EG-T/30s treatments, without actual vitrification. These treatments did not affect maturation but both significantly reduced blastocyst development (0% and 0%, vs. 21% for controls). This represents the second report of blastocyst development after vitrification of GV-stage equine oocytes, and presents the highest developmental competence yet achieved; however, more work is needed to increase the efficiency of this system. 相似文献
6.
The objective of this study was to clarify the effects of liquid preservation conditions on the ability of pig sperm to activate oocytes, form a male pronucleus, and initiate preimplantational development of embryos after intracytoplasmic sperm injection (ICSI). Porcine ejaculates were preserved at 4, 14, and 24 °C for up to 48 h, and then damage to the plasma membrane, morphologic changes of the acrosome, and the amount of phospholipase Cζ (PLCζ) in the sperm were assessed by SYBR-14/propidium iodide staining, fluorescein isothiocyanate-conjugated peanut agglutinin staining, indirect immunofluorescence, and Western blots, respectively. The proportion of sperm with a disintegrated plasma membrane or damaged acrosome increased in all samples as the duration of preservation increased, although the time courses of the increases varied among preservation temperatures. The immunolocalization and immunoreactivity of PLCζ in the sperm showed its reduction concurrent with disintegration of the plasma membrane and acrosome. Rates of oocyte activation, male-pronuclear formation, and blastocyst formation after ICSI using sperm preserved for 18 h at 24 °C (78%, 62%, and 35%, respectively) and for 48 h at 14 °C (63%, 53%, and 28%, respectively) were significantly higher than those of any other sperm sample. We concluded that the damage to the plasma membrane and acrosome, and a sufficient amount of PLCζ in the sperm head, enhanced successful oocyte activation, fertilization, and early development of the oocytes after ICSI. Moreover, we inferred that appropriate liquid preservation of sperm improved the efficiency of blastocyst production in vitro after ICSI in pigs. 相似文献
7.
Full term development of rabbit oocytes fertilized by intracytoplasmic sperm injection 总被引:3,自引:0,他引:3
Intracytoplasmic sperm injection (ICSI) has been applied successfully in the treatment of male infertility in humans and in fertilization research in mice. However, the technique has had limited success in producing offspring in other species including the rabbit. The aim of this research was to test the in vitro and in vivo developmental of rabbit oocytes after ICSI. Sperm used for ICSI were collected from mature Dutch Belted buck and washed 2-3 times with PBS +0.1% polyvinyl alcohol (PVA) and then mixed with 10% polyvinyl pyrrolidone (PVP) prior to microinjection. Oocytes were collected from superovulated does 14-15 hr after hCG injection and were fertilized by microinjection of a single sperm into the ooplasm of each oocyte without additional activation treatment. After ICSI, the presumed zygotes were either cultured in KSOM +0.3% BSA for 4 days or transferred into oviducts of recipient does at the pronuclear or 2-cell stage. A high percentage of fertilization (78%, n = 114) and blastocyst development (39%) was obtained after ICSI. Control oocytes, receiving a sham injection, exhibited a lower activation rate (31%, n = 51) and were unable to develop to the blastocyst stage, suggesting that the blastocysts developed following ICSI were derived from successful fertilization rather than parthenogenetic development. A total of 113 embryos were transferred to six recipient does. Two recipients became pregnant and delivered seven live young. Our results demonstrated that rabbit oocytes can be successfully fertilized and activated by ICSI and can result in the birth of live offspring. 相似文献
8.
Full-term development of golden hamster oocytes following intracytoplasmic sperm head injection 总被引:3,自引:0,他引:3
The golden hamster is the mammalian species in which intracytoplasmic sperm injection (ICSI) was first tried to produce fertilized oocytes. Thus far, however, there are no reports of full-term development of hamster oocytes fertilized by ICSI. Here we report the birth of hamster offspring following ICSI. Keys to success were 1) performing ICSI in a dark room with a small incandescent lamp and manipulating both oocytes and fertilized eggs under a microscope with a red light source and 2) injecting sperm heads without acrosomes. All oocytes injected with acrosome-intact sperm heads died within 3 h after injection, while those oocytes injected with acrosomeless sperm heads survived injection. Under illumination with red light in a dark room, the majority of the oocytes injected with acrosomeless sperm heads were fertilized normally (77%), cleaved (91%), and developed into morulae (49%). Of the 47 morulae transferred to five recipient females, nine (19%) developed to live offspring. 相似文献
9.
The objective was to determine the effects of various methods of oocyte activation and sperm pretreatment on development of porcine embryos derived from in vitro-matured oocytes and intracytoplasmic sperm injection (ICSI). The second polar body was extruded in the majority (>78.4%) of in vitro-matured (IVM) oocytes 4h after electrical pulse activation. In embryos generated by ICSI and sham-ICSI, a combination of an electrical pulse, with various chemical activators 4 h later, improved (P < 0.05) blastocyst formation rate compared to activation only with a pulse. Treatment with 6-dimethylaminopurine (DMAP) after electrical activation significantly increased the oocyte activation rate. The effects of exposure of sperm to repeated freeze-thaw cycles (without cryoprotectant) on oocyte activation and the effects of sperm pre-incubated with dithiothreitol (DTT) or Triton X-100 on early embryo development were also examined. Blastocyst formation rates after ICSI did not differ between motile sperm and those rendered immotile by one-time freezing and thawing without cryoprotectant. However, sperm rendered immotile by three cycles of freezing/thawing without cryoprotectant had a significantly lower blastocyst formation rate. Although oocytes injected with sperm pre-incubated with Triton X-100 had a higher normal fertilization rate than those pre-incubated with DTT or one-time frozen/thawed sperm, rates of blastocyst formation and cell numbers were similar among the three groups. In conclusion, various methods of oocyte activation and sperm preparation significantly affected the developmental capacity of early porcine embryos derived from IVM and ICSI. 相似文献
10.
Oocyte activation and parthenogenetic development of bovine oocytes following intracytoplasmic sperm injection. 总被引:3,自引:0,他引:3
X Li K Hamano X Q Qian K Funauchi M Furudate Y Minato 《Zygote (Cambridge, England)》1999,7(3):233-237
Development of bovine oocytes after intracytoplasmic sperm injection (ICSI) was investigated. Oocytes were matured for 24-26 h in vitro and injected with isolated sperm heads. When treated with 7% ethanol (v/v) for 5 min, 71.7% of ICSI oocytes were activated as shown by the resumption of meiosis and the formation of female pronuclei. However, 41.5% of injected sperm heads remained condensed at 18-20 h after injection into the ooplasm. The incidence of decondensing sperm and that of male pronuclei at this stage were 15.1% and 26.4%, respectively. A total of 55.5% of oocytes reached the 2-cell stage following sperm head injection and 54.7% after sham-ICSI; these percentages were not significantly different from those following in vitro fertilisation (IVF) (73.1%). The percentage of 2-cell embryos reaching the 8-cell stage following ICSI was 37.5%, and 27.6% after sham-ICSI, which were significantly lower (p < 0.01) than the equivalent percentage following IVF (62.4%). The percentages of parthenogenetic embryos reaching the 2-cell, 4-cell and 8-cell stages following ICSI were 56.4%, 48.9% and 30.0%, respectively. These results indicate that the low rate of normal embryonic development of bovine oocytes following ICSI is largely due to the parthenogenetic activation of the oocytes. 相似文献
11.
Ock SA Bhak JS Balasubramanian S Lee HJ Choe SY Rho GJ 《Zygote (Cambridge, England)》2003,11(1):69-76
In this study, the developmental capacity and cytogenetic composition of different oocyte activation protocols was evaluated following intracytoplasmic sperm injection (ICSI) of in vitro matured bovine oocytes. Motile spermatozoa selected by Percoll density gradient were treated with 5 mM dithiothreitol (DTT) and analysed for ultrastructural changes of the head using transmission electron microscopy (TEM). The alterations in sperm morphology after DTT treatment for different times (15, 30 and 60 min) were 10%, 45-55% and 70-85%, respectively. Further, a partial decondensation of sperm heads was observed after DTT treatment for 30 min. Oocytes were injected with sperm treated with DTT for 30 min. In group 1, sperm injection was performed without any activation stimulus to the oocytes. In group 2, sham injection without sperm was performed without activating the oocytes. Oocytes injected with sperm exposed to 5 microM ionomycin for 5 min (group 3), 5 microM ionomycin + 1.9 mM dimethylaminopurine (DMAP) for 3 h (group 4) and 5 microM ionomycin + 3 h culture in M199 + 1.9 mM DMAP (group 5) were also evaluated for cleavage, development and chromosomal abnormality. Cleavage and development rates in groups 1, 2 and 3 were significantly (p < 0.05) lower than those in groups 4 and 5. The incidence of chromosomal abnormality in the embryos treated directly with DMAP after ionomycin (group 4) was higher than in group 5. We conclude that immediate DMAP treatment after ionomycin exposure of oocytes results in arrest of release of the second polar body, and thus leads to changes in chromosomal pattern. Therefore, the time interval between ionomycin and DMAP plays a crucial role in bovine ICSI. 相似文献
12.
Progesterone treatment of boar spermatozoa improves male pronuclear formation after intracytoplasmic sperm injection into porcine oocytes 总被引:1,自引:0,他引:1
Boar spermatozoa were prepared for intracytoplasmic sperm injection (ICSI) by two different treatments to facilitate sperm chromatin decondensation and improve fertilisation rates after ICSI in pigs: spermatozoa were either frozen and thawed without cryoprotectants, or treated with progesterone. Morphological changes of the sperm heads after the treatments were examined and then the activation of oocytes and the transformation of the sperm nucleus following ICSI were assessed. After freezing and thawing, the plasma membrane and acrosomal contents over the apical region of sperm head were lost in all the spermatozoa. Following treatment with 1 mg/ml progesterone, the acrosome reaction was induced in 61% of spermatozoa. After injection of three types of spermatozoa, non-treated spermatozoa and progesterone-treated (i.e. acrosome-reacted) spermatozoa induced oocyte activation, but frozen-thawed spermatozoa induced oocyte activation at a significantly lower rate. Sixty-two per cent of sperm heads remained orcein-negative for 6 h, however, resulting in delayed sperm chromatin decondensation and low male pronuclear formation in the oocytes injected with a non-treated spermatazoon. Since the treatments of freezing and thawing and progesterone for spermatozoa accelerated the initial change in sperm chromatin and the latter treatment induced oocyte activation earlier, it is considered that the delay in oocyte activation and decondensation of sperm chromatin after injection of non-treated spermatozoa is caused by the existence of the sperm plasma membrane. These results show that progesterone treatment efficiently induces the acrosome reaction in boar spermatozoa without destroying their potency for oocyte activation, and the induction of the acrosome reaction results in the promotion of male pronuclear formation after ICSI. 相似文献
13.
Effects of different activation treatments on fertilization of horse oocytes by intracytoplasmic sperm injection 总被引:5,自引:0,他引:5
The effects of four reagents on the activation and subsequent fertilization of equine oocytes, and the development of these after intracytoplasmic sperm injection, were investigated. Cumulus-oocyte complexes collected from equine ovaries obtained from an abattoir were matured in vitro for 40-44 h in TCM199 medium before being injected, when in metaphase II, with an immobilized stallion spermatozoon. The cumulus-oocyte complexes were then subjected to one of five activation treatments: (a) 10 micromol ionomycin l(-1) for 10 min; (b) 7% (v/v) ethanol for 10 min; (c) 100 micromol thimerosal l(-1) for 10 min; (d) 250 micromol inositol 1,4, 5-triphosphate l(-1) injection; and (e) no treatment (control). After 18-20 h further culture, the cumulus-oocyte complexes were assessed for activation by observing whether they had progressed through second anaphase-telophase and had formed a female pronucleus. The proportions of oocytes activated after each treatment were: 16/27 (59%) for ionomycin; 14/25 (56%) for ethanol; 22/28 (79%) for thimerosal; 15/27 (56%) for inositol 1,4,5-triphosphate; and 0/20 (0%) for the untreated controls. Thus, significantly more oocytes (P < 0.05) were activated by treatment with thimerosal than by the other four treatments. The proportions of oocytes that cleaved to the two-cell stage at 24-30 h after sperm injection in the groups treated with ionomycin, ethanol and thimerosal were 7/20 (35%), 5/19 (26%) and 11/23 (48%), respectively. No cleavage was observed in any of the control oocytes or those treated with inositol 1,4, 5-triphosphate. Furthermore, evidence of normal fertilization was observed in 2/7 (29%), 2/5 (40%) and 7/11 (64%) of the oocytes treated with ionomycin, ethanol and thimerosal, respectively. These results demonstrated that: (a) it is possible to activate equine oocytes with the chemical stimulants, ionomycin, ethanol, thimerosal and inositol 1,4,5-triphosphate; (b) thimerosal is more effective than the other three reagents in facilitating both meiotic activation and normal fertilization of equine oocytes; and (c) chemical activation may also stimulate parthenogenetic cleavage of oocytes without concurrent changes in the head of the spermatozoon. 相似文献
14.
This study investigated the development of bovine oocytes following intracytoplasmic injection of sperm heads from spermatozoa dried by heating. When sperm suspension was heated in a dry oven at 50, 56, 90, and 120 degrees C, the mean amounts of residual water were about 0.3 g water/g dry weight within 8 h, 6 h, 1.5 h, and 20 min of heating, respectively. Oocyte activation, cleavage of oocytes, and development of cleaved embryos to the morula stage were better in oocytes injected with spermatozoa stored at 25 degrees C for 7-10 days following drying at 50 and 56 degrees C than at 90 and 120 degrees C; however, only a small proportion of oocytes developed to the blastocyst stage. When spermatozoa were dried at 50 degrees C for 16 h, activation, male pronucleus (MPN) formation, cleavage, and development to the morula stage were less good than when spermatozoa were dried for 8 and 10 h and no blastocysts were obtained. The development of oocytes was significantly better when spermatozoa were stored for 7-10 days at 4 degrees C than 25 degrees C after drying at 50 degrees C for 8 h. Longer storage (7 days-12 mo) of heat-dried spermatozoa at 4 degrees C did not affect MPN formation in activated oocytes, but blastocyst development was significantly lower when spermatozoa were stored for 3 mo or more. These results demonstrate that bovine oocytes can be fertilized with heat-dried spermatozoa and that the fertilized oocytes can develop at least to the blastocyst stage. 相似文献
15.
Development of in vivo-matured porcine oocytes following intracytoplasmic sperm injection 总被引:8,自引:0,他引:8
Martin MJ 《Biology of reproduction》2000,63(1):109-112
The objective of this study was to assess the development of porcine ova fertilized by intracytoplasmic sperm injection (ICSI). Allyl trenbolone (Regumate) was used to synchronize estrus in 13 postpuberal gilts. Gilts were superovulated with pregnant mare serum gonadotropin and hCG. Ova were aspirated from 5- to 8-mm follicles at 36 h after hCG. Cumulus cells were removed by blunt dissection and pipetting in Beltsville embryo culture medium (BECM) supplemented with 0.1% hyaluronidase. Sperm were washed and resuspended in BECM + 8% polyvinylpyrrolidone. Ova (n = 237) that exhibited a polar body were centrifuged at 15 000 x g for 6 min and injected with a single spermatozoon. One hundred fifty-four ova were cultured in NCSU-23 medium in a 5% CO(2) in air environment for 168 h. Ova were fixed in acetic acid/ethanol and stained with 1% orcein. Sixty-nine ICSI ova were cultured for 24 h and transferred (mean = 23) to three recipients. Eighty-one ova (69%) that survived ICSI cleaved within 48 h. Thirty-eight percent (31/81) of these ova became blastocysts (mean +/- SEM = 24.7 +/- 1.1 cells). One recipient gave birth to three pigs. These results demonstrate that porcine embryos derived from ICSI can develop into live pigs. 相似文献
16.
The objective of the present study was to investigate the nuclei of human sperms that failed to fertilize human oocytes after intracytoplasmic sperm injection (ICSI). The sperms were injected into mouse oocytes by a piezo-micromanipulator, and some of these oocytes were artificially activated with strontium chloride (SrCl2) after ICSI. The oocytes were fixed, stained, and subjected to chromosomal analysis. The survival rate of mouse oocytes injected with infertile human sperms was 92.0% (46/50), while that of the control mouse oocytes injected with fertile human sperms was 73.6% (81/110). The rate of two pronuclei (2PN) formation was 0 (0/46) by the infertile sperms and 81.5% (66/81) by the fertile ones, a significant difference (p < 0.01). Sperm chromosomes in non-activated oocytes were present as premature chromosome condensation (PCC). Artificial activation after ICSI increased the 2PN formation rate in the infertile group to 90.3% (28/31). The results of the present study suggest that infertile sperms have a low potential to spontaneously activate oocytes and to form pronuclei. Thus, artificial activation after ICSI may rescue oocytes fertilized with infertile human sperms that do not produce 2PN. The present study proved the usefulness of mouse oocytes as specimens in evaluating the oocyte-activating capacity of objective human sperms prior to ICSI treatment. 相似文献
17.
The objective of this study was to optimize intracytoplasmic sperm injection (ICSI), and to assess the effects of membrane-damaged sperm on development of porcine oocytes following ICSI. For optimization of development following the ICSI process, sperm injected oocytes were activated 0.5-1.0 hr after ICSI with 1 x 30 micros pulse of 1.2, 1.7, 2.2, and 2.7 kV/cm DC in experiment 1. After 7-days of culture ICSI oocytes activated with [x1]2.2 kV/cm produced more blastocyts ([x2]34.4%, P < 0.05) than other treatment groups. In experiment 2, oocytes were activated with 1 x 30 micros pulse of 2.2 kV/cm at either 0, 1.5, 3, or 6 hr after ICSI. Oocytes activated 1.5 hr after [x3]ICSI yielded more blastocysts (27.6%)[M4] than in other treatments. In experiment 3, sperm were briefly exposed to 0.1% Triton X-100 to induce membrane damage. Live-dead staining of Percoll-sorted untreated spermatozoa (frozen-thawed) used in this study showed that over 96% were "alive" whereas none were "alive" after Triton X-100 treatment. The rate of development to blastocyst of oocytes injected with Triton X-100 treated sperm combined with electrical activation (EA) at 1 x 30 micros pulse of 2.2 kV/cm (EA, 40.0%) was the best, when compared with those injected with untreated sperm plus EA (P < 0.05). In experiment 4, the development rate of oocytes to the blastocyst stage ([x5]32.1%) following injection of a sperm head only was not significantly different from that of oocytes injected with whole sperm (31.0%). In conclusion, we found that an intact membrane and tail structures of pig spermatozoa are not essential for embryo development by ICSI, and furthermore, dead porcine spermatozoa, at an early stage of necrosis caused by plasma membrane damage, support better embryo development than do live non-damaged sperm. 相似文献
18.
In the human and the mouse, intracytoplasmic sperm injection (ICSI) apparently triggers normal fertilization and may result in offspring. In the bovine, injection of spermatozoa must be accompanied by artificial methods of oocyte activation in order to achieve normal fertilization events (e.g., pronuclear formation). In this study, different methods of oocyte activation were tested following ICSI of in vitro-matured bovine oocytes. Bovine oocytes were centrifuged to facilitate sperm injection, and spermatozoa were pretreated with 5 mM dithiothreitol (DTT) to promote decondensation. Sperm-injected or sham-injected oocytes were activated with 5 microM ionomycin (A23187). Three hours after activation, oocytes with second polar bodies were selected and treated with 1.9 mM 6-dimethylaminopurine (DMAP). The cleavage rate of sperm-injected oocytes treated with ionomycin and DMAP was higher than with ionomycin alone (62 vs 27%, P < or = 0.05). Blastocysts (2 of 41 cleaved) were obtained only from the sperm-injected, ionomycin + DMAP-treated oocytes. Upon examination 16 h after ICSI, pronuclear formation was observed in 33 of 47 (70%) DMAP-treated oocytes. Two pronuclei were present in 18 of 33 (55%), while 1 and 3 pronuclei were seen in 8 of 33 (24%) and 7 of 33 (21%) oocytes, respectively. In sham-injected oocytes, pronuclear formation was observed in 15 of 38 (39%) with 9 (60%) having 2 pronuclei. Asa single calcium stimulation was insufficient and DMAP treatment could result in triploidy, activation by multiple calcium stimulations was tested. Three calcium stimulations (5 microM ionomycin) were given at 30-min intervals following ICSI. Two pronuclei were found in 12 of 41 (29%) injected oocytes. Increasing the concentration of ionomycin from 5 to 50 microM resulted in a higher rate of activation (41 vs 26%). The rate of metaphase III arrest was lower while the rate of pronuclear formation and cleavage development was higher in sperm-injected than sham-injected oocytes, suggesting that spermatozoa contribute to the activation process. Further improvements in oocyte activation following ICSI in the bovine are necessary. 相似文献
19.
Birth of normal calves after intracytoplasmic sperm injection of bovine oocytes: a methodological approach 总被引:7,自引:0,他引:7
Intracytoplasmic sperm injection (ICSI) is advantageous when only very few spermatozoa are available for insemination. Bovine spermatozoa were injected individually into matured oocytes using a piezo electric actuator. Spermatozoa were "immobilized", by scoring their tails immediately before injection, or "killed", by repeated freezing and thawing. About 4 h after ICSI, the oocytes with two polar bodies (activated by sperm injection) were selected and treated 5 min with 7% ethanol before further culture. When examined 19-21 h after ICSI, nearly 90% of the oocytes were fertilized normally (two pronuclei and two polar bodies) irrespective of the sperm treatment (immobilization or killing) prior to ICSI, but subsequent preimplantation embryo development was much superior (cleavage 72%: blastocysts 20%) after ICSI with immobilized spermatozoa than by using killed spermatozoa (cleavage 28%; blastocysts 1%). Ethanol activation of bovine oocytes with two polar bodies 4 h after ICSI improved the cleavage (33% versus 72%) and blastocyst (12% versus 20%) rates markedly (P < 0.05). Five normal calves were born after transplantation of ten blastocysts to ten surrogate cows. These results show that piezo-ICSI using immobilized spermatozoa, combined with ethanol treatment of sperm-injected oocytes, is an effective method to produce bovine offspring. 相似文献
20.
Holding immature oocytes before the onset of maturation simplifies oocyte transport and aids in scheduling later manipulations. We report here a method for holding equine oocytes in the absence of meiotic inhibitors. In Experiment 1, immature oocytes with expanded cumuli were cultured at 38.2 degrees C in medium containing cycloheximide, or were held at room-temperature in M199 with Hanks' salts, for 16-18 h before maturation. Control oocytes were matured immediately after recovery. Oocytes were fertilized by intracytoplasmic sperm injection and cultured for 4d. Embryo development was not different among treatments. In Experiment 2, oocytes were treated as in Experiment 1, but embryos were cultured for 7.5d. Blastocyst development was significantly lower in the cycloheximide-treated group than in controls (7% versus 30%) with the room-temperature group intermediate (16%). In Experiment 3, oocytes were cultured at 38.2 degrees C in medium containing roscovitine, or were held at room temperature in sealed glass vials in a mixture of 40% M199 with Earle's salts, 40% M199 with Hanks' salts, and 20% FBS (EH treatment) for 16-18 h, before maturation, sperm injection, and embryo culture for 7.5d. Blastocyst development of oocytes in the EH treatment was significantly higher than that for roscovitine-treated oocytes (34% versus 12%), but not significantly different from that for controls (25%). Oocytes in the EH treatment did not mature during holding (70% germinal vesicle stage after 18 h holding). Whereas culture with cycloheximide or roscovitine of equine oocytes with expanded cumuli reduced subsequent blastocyst formation, these oocytes could be held in a modified M199 at room temperature overnight without adverse affecting meiotic or developmental competence. 相似文献