首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different types of product formation kinetics are discussed with respect to their significance for fermentation process economics. Microbial products belonging to various classes are formed in a growth-coupled manner. It is often found that the specific rate of product formation increases with the specific growth rate, approaching a maximum at higher growth rates. It is illustrated that for such types of relationship between the product formation rate and the growth rate process conditions are optimal when the specific rate of product formation is about half-maximal.  相似文献   

2.
A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed. The second purpose is using these results for online estimation of current values for the most important state variables of the fermentation process. One only needs online data of the total carbon dioxide production rate (tCPR) produced and an initial value x of the biomass, i.e., the size of the inoculum, for model evaluation. Hence, given the inoculum size and online values of tCPR, the model can directly be employed as a softsensor for the actual value of the biomass, the product mass as well as the specific biomass growth rate and the specific product formation rate. In this paper the method is applied to fermentation experiments on the laboratory scale with an E. coli strain producing a recombinant protein that appears in form of inclusion bodies within the cells’ cytoplasm.  相似文献   

3.
In the microbial production of useful products, it is important to understand the allocation of substrate energy for maintanance, growth, and product formation. Methods are presented to obtain point and 95% confidence interval estimates for the true growth yield parameter, true product yield parameter, and the maintenance parameter. Methods are presented which allow all data to be used simultaneously for those cases where more than the minimum number of measurements are made at each specific growth rate (or dilution rate). Three estimation methods and two forms of the energy allocation equations are investigated. Point estimates are similar for the three methods, but interval estimates are considerably larger for one of the three methods. The results depend on the form of the equations.  相似文献   

4.
Obtaining accurate estimates of maximum specific growth rate, growth yield, and product yield is important for many fermentation processes. A systematic procedure is presented to select the exponential growth region and estimate the maximum specific growth rate using the covariate adjustment method with all the available measured variables (i.e. biomass, substrate, and product). The procedure is applied to data collected during growth of pure and mixed cultures of Lactobacillus bulgaricus and Streptococcus thermophilus on 3% dry milk under anaerobic conditions. The estimation procedure gives good estimates with relatively narrow confidence intervals even though biomass concentration is measured by an indirect method. The estimated values of maximum specific growth rate range from 0.2805 h(-1) for S. thermophilus (ATCC-19258) to 0.4672 h(-1) for S. thermophilus (Microlife). Growth and product yields are estimated using regression analysis and the data for the exponential growth region. The growth yields are compared to their theoretical maximum values.  相似文献   

5.
The objective of this article is to propose an algorithm for the on-line estimation of the specific growth rate in a batch or a fed-batch fermentation process. The algorithm shows the practical procedure for the estimation method utilizing the macroscopic balance and the extended Kalman filter. A number of studies of the on line estimation have been presented. However, there are few studies discussing about the selection of the observed variables and for the tuning of some parameters of the extended Kalman filter, such as covariance matrix and initial values of the state.The beginning of this article is devoted to explain the selection of the observed variable. This information is very important in terms of the practical know-how for using technique. It is discovered that the condition number is a practically useful and valid criterion for number is a practically useful and valid criterion for choosing the variable to be observed.Next, when the extended Kalman filter in applied to the online estimation of the specific growth rate, which is directly unmeasurable, criteria for judging the validity of the estimated value from the observed data are proposed. Based on the proposed criterial, the system equation of the specific growth rate is selected and initial value of the state variable and covariance matrix of the system noises are adjusted. From many experiments, it is certified that the specific growth rate in the batch or fed -batch fermentation can be estimated accurately by means of the algorithm proposed here. In these experiments, that is, when the cell concentration is measured directly, the extended Kalman filter using the convariance matrix with a constant element can estimate more accurately values of the specific growth rate than the adaptive extended Kalman filter does.  相似文献   

6.
As is often the case for microbial product formation, the penicillin production rate of Penicillium chrysogenum has been observed to be a function of the growth rate of the organism. The relation between the biomass specific rate of penicillin formation (qp) and growth rate (µ) has been measured under steady state conditions in carbon limited chemostats resulting in a steady state qp(µ) relation. Direct application of such a relation to predict the rate of product formation during dynamic conditions, as they occur, for example, in fed‐batch experiments, leads to errors in the prediction, because qp is not an instantaneous function of the growth rate but rather lags behind because of adaptational and regulatory processes. In this paper a dynamic gene regulation model is presented, in which the specific rate of penicillin production is assumed to be a linear function of the amount of a rate‐limiting enzyme in the penicillin production pathway. Enzyme activity assays were performed and strongly indicated that isopenicillin‐N synthase (IPNS) was the main rate‐limiting enzyme for penicillin‐G biosynthesis in our strain. The developed gene regulation model predicts the expression of this rate limiting enzyme based on glucose repression, fast decay of the mRNA encoding for the enzyme as well as the decay of the enzyme itself. The gene regulation model was combined with a stoichiometric model and appeared to accurately describe the biomass and penicillin concentrations for both chemostat steady‐state as well as the dynamics during chemostat start‐up and fed‐batch cultivation. Biotechnol. Bioeng. 2010;106: 608–618. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
A macrokinetic model for Pichia pastoris expressing recombinant human serum albumin is proposed. The model describes the balances of some key metabolites, ATP and NADH, during glycerol and methanol metabolism. In the glycerol growth phase, the metabolic pathways mainly include phosphorylation, glycolysis, tricarboxylic acid cycle, and respiratory chain. In the methanol growth phase, methanol is oxidized to formaldehyde at first. Then, while a part of formaldehyde is oxidized to formate, the rest is condensed with xylulose-5-monophosphate to form glyceraldehyde-3-phosphate, and further assimilated to form cell constituents. The metabolic pathways following glyceraldehyde-3-phosphate were assumed to be similar to those in the glycerol growth phase. Based on the model, the macrokinetic bioreaction rates such as the specific substrate consumption rate, the specific growth rate, the specific acetyl-CoA formation rate as well as the specific oxygen uptake rate are obtained. The specific substrate consumption rate and the specific growth rate are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, i.e., the medium volume, the concentrations of the biomass, the substrate, and the product, is set up. Experimental results demonstrate that the model can describe the cell growth and the protein production with reasonable accuracy.  相似文献   

8.
Control of microbial conversion processes is frequently inhibited by the infeasibility of measuring important process variables. In order to circumvent this lack of measurements, an accurate or valuable and conveniently measurable on-line hardware measurement can be combined with the balance equations describing the process to obtain estimates of less easily measurable variables. In this article the on-line estimation of the specific growth rate of Candida utilis is evaluated. The observer-based estimator requires a hardware measurement of the biomass during fermentations in conjuction with a model of the process; therefore the Biomass Monitor, giving an on-line measurement of viable biomass, is used in the bioreactor experiments described. The optimal tuning of the estimation for the experimental conditions is described and several alternative adaptations of the design of the estimator are presented. The influence of implemented time intervals for discretization of the estimator on the reliability of the estimated growth rate values is discussed. Additionally, the necessary choice of an initial value of the estimated specific growth rate has proven to be of great importance in practice.  相似文献   

9.
The balance equations for carbon, reduction potential, and energy during cell growth and product formation are rederived in a general form. Cells are treated simply as a very complex product, and the Y(ATP) concept is extended to products. Limitations on the theoretical yield are discussed for different product types. Simple aerobic products cannot be energy limited unless the maintenance requirement is large, while complex products cannot be reduction limited. A maximum yield is defined for products much more oxidized than their substrate (carbon limited) because the theoretical yield conditions may violate the energy balance. For reduced complex products the yield on available electrons is related to Y(ATP), the P/O ratio, and the product composition. Narrow bounds are established on the actual yields in simple anaerobic fermentations, and the significance of the yields in the linear growth equation is discussed.  相似文献   

10.
A recombinant avidin-producing Mut+ Pichia pastoris strain was used as a model organism to study the influence of the methanol feeding strategy on the specific product productivity (q(p)) and protein glycosylation. Fed-batch cultivations performed at various specific growth rates (micro) and residual methanol concentrations showed that the specific avidin productivity is growth-dependent. The specific productivity increases strongly with the specific growth rate for micro ranging from 0 to 0.02 h(-1), and increases only slightly with the specific growth rate above this limit. N-terminal glycosylation was also found to be influenced by the specific growth rate, since 9-mannose glycans were the most abundant form at low growth rates, whereas 10-mannose carbohydrate chains were favored at higher micro. These results show that culture parameters, such as the specific growth rate, may significantly affect the activity of glycoproteins produced in Pichia pastoris. In terms of process optimization, this suggests that a compromise on the specific growth rate may have to be found, in certain cases, to work with an acceptable productivity while avoiding the addition of many mannoses.  相似文献   

11.
A feb-batch operation for the production of bovine somatotropin (bST) under the control of tryptophan promoter in Escherichia coli was investigated. The plasmid used contains a two-cistron system and altered codon usage for higher expression of bST. Specific growth rate is an important parameter in the fermentation, because it affects the production of growth-inhibitory organic acids and the expression of recombinant protein. The feeding rate was adjusted to keep the specific growth rate constant in this study. The variable growth yield expressed as a function of time was used for the calculation of the feeding rate. The growth yield decreases during the fermentation as product expression is induced. The specific growth rate was well controlled; however, intracellular bST concentration decreased at high cell concentrations. This is considered to be due to degradation by proteases. The decrease was prevented by an exponential feeding of the yeast extract as an organic nitrogen source. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
An unstructured model for an integrated fermentation/membrane extraction process for the production of the aroma compounds 2-phenylethanol and 2-phenylethylacetate by Kluyveromyces marxianus CBS 600 was developed. The extent to which this model, based only on data from the conventional fermentation and separation processes, provided an estimation of the integrated process was evaluated. The effect of product inhibition on specific growth rate and on biomass yield by both aroma compounds was approximated by multivariate regression. Simulations of the respective submodels for fermentation and the separation process matched well with experimental results. With respect to the in situ product removal (ISPR) process, the effect of reduced product inhibition due to product removal on specific growth rate and biomass yield was predicted adequately by the model simulations. Overall product yields were increased considerably in this process (4.0 g/L 2-PE+2-PEA vs. 1.4 g/L in conventional fermentation) and were even higher than predicted by the model. To describe the effect of product concentration on product formation itself, the model was extended using results from the conventional and the ISPR process, thus agreement between model and experimental data improved notably. Therefore, this model can be a useful tool for the development and optimization of an efficient integrated bioprocess.  相似文献   

13.
Kinetics of electron-donor oxidation, storage-polymer formation and growth were studied in continuous cultures ofChromatium under conditions of balanced growth as well as during transient states.Under steady-state conditions, glycogen was accumulated at all dilution rates. This observation is consistent with previously postulated ideas about an ineffective glycogen-synthesis regulation.Upon perturbing the steady states, brought about by injection of extra sulfide into steady-state cultures, the following phenomena were observed immediately, irrespective of the dilution rate: the specific rate of sulfide oxidation increased to the value found in batch cultures, the sulfur-oxidation rate was decreased, the specific glycogen-synthesis rate increased, the increment being higher the lower the dilution rate, but an increase in the specific growth rate, if any, was below the limit of detection. The inverse relationship between the specific rates of glycogen synthesis and growth after removing the substrate limitation is to be explained by a shortage of intermediates, rather than by a growth-rate dependent intrinsic glycogen-synthesis limitation, because upon complete inhibition of growth a further increase in the rate of glycogen synthesis was observed. Essayed in this way, identical glycogen-synthesis rates were found at all dilution rates.Competitive advantages of such an apparently not adapted metabolism in environments with diurnal fluctuations in substrate concentrations are discussed.Non-Standard Abbreviations Nc cell nitrogen - TS total sugar - PHB poly--hydroxybutyrate - D dilution rate - SR reservoir concentration of the growth-limiting substrate - CAP chloramphenicol  相似文献   

14.
Fetal bovine serum (FBS) is the most widely used growth supplement for cell cultures, primarily because of its high levels of growth stimulatory factors and low levels of growth inhibitory factors. Maintaining successful and consistent cell fermentations can be difficult, as FBS is a complex natural product and may vary from lot to lot even from a single manufacturer. The quality and concentration of both bulk and specific proteins can affect cell growth. Quality control tools for FBS are relatively primitive and expensive given the complexity of the sample and the large amounts of FBS used. We undertook this study to examine whether proteomics could be used as a tool to analyze the variability of different fermentation processes. We hypothesized that inconsistent cell growth in fermentations could be due to the quality of FBS and that different lots of FBS had varying concentrations of proteins such as growth stimulatory factors, growth inhibitory factors, and/or other proteins that may correlate with cellular growth rate. To investigate whether this was the case, we grew three batches of adult retinal pigment epithelial cells (ARPE-19) using three different lots of fetal bovine serum (FBS-Ia, FBS-Ib, and FBS-II). We found that the growth rate of the culture was significantly and consistently higher in the FBS-II lot. To determine why the other lots promoted different growth properties, we used proteomic techniques to analyze the protein composition of the three lots. We then performed a time course study to monitor specific changes in individual proteins in the fermentation medium. The amount of several extracellular matrix and structural proteins, which are indicators of cell growth, increased over time. Alternatively, components supplied by the FBS addition, such as nutritional-related and cell-spreading-related proteins, decreased over time.  相似文献   

15.
16.
Mammalian cells grown in culture excrete lactic acid and ammonium ions in quantities that may limit growth and reduce product synthesis. Frequent replenishment of the culture medium is often necessary to prevent waste product accumulation which could inhibit cell growth. Since increased medium replenishment results in increased usage of animal serum, the most expensive raw material, excessive production of waste products lowers the cell and product yield on serum, and hence increases production costs. Strategies for reducing the production of lactic acid and ammonium bymammalian cells via controlled addition of glucose and glutamine will be demonstrated. Mathematical relations coupling ammonium and glutamine kinetics will be described. Additionally, a method for automatic on-line estimation of the cell concentration was developed. This method involves calculating the ATP production rate from the oxygen uptake rate and the lactic acid production rate. Automatic online estimation of the cell concentration is critical if nutrient levels in large-scale mammaliancell cultures are to be accurately maintained via process control.  相似文献   

17.
Many classes of bioactive drug-like molecules derived from traditional herbal plants are becoming attractive as alternative medicines for the treatment of severe chronic diseases such as cancer and obesity. A set of chemically synthesized drugs that is capable of both inhibiting cancer growth and reducing body weight for treatment of obesity have severe side effects including nausea, vomiting, diarrhea as well as producing increased blood pressure and headache, respectively. For decades, drug candidates from herbal plants have been considered as potential therapeutic agents because they are generally safer, less toxic, and have fewer lethal side effects than chemically synthesized or semi-synthetic drugs. Understanding the key factors affecting pharmacological effects and clinical outcomes has been a critical theme of natural product research. However, standardized sample preparation methods, well-controlled scientific studies, and validation studies are needed before herbal therapeutics can be introduced into the global market. This review will address the current advances in using traditional herbal plants, including the pharmacological effects and the challenges faced during the development of new drugs. The safety issues associated with toxicity and the effectiveness of the herbs in specific diseases such as cancer and obesity are also discussed.  相似文献   

18.
This article discusses issues related to estimation and monitoring of fermentation processes that exhibit endogenous metabolism and time-varying maintenance activity. Such culture-related activities hamper the use of traditional, software sensor-based algorithms, such as the extended kalman filter (EKF). In the approach presented here, the individual effects of the endogenous decay and the true maintenance processes have been lumped to represent a modified maintenance coefficient, m(c). Model equations that relate measurable process outputs, such as the carbon dioxide evolution rate (CER) and biomass, to the observable process parameters (such as net specific growth rate and the modified maintenance coefficient) are proposed. These model equations are used in an estimator that can formally accommodate delayed, infrequent measurements of the culture states (such as the biomass) as well as frequent, culture-related secondary measurements (such as the CER). The resulting multirate software sensor-based estimation strategy is used to monitor biomass profiles as well as profiles of critical fermentation parameters, such as the specific growth for a fed-batch fermentation of Streptomyces clavuligerus. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
An empirical relation relating specific growth, rate in steady state systems to nutrient status with respect to more than one nutrient simultaneously is proposed, based on 3 experimentally verifiable postulates: (1) that uptake depends on the external substrate concentration; (2) that growth depends on the interval substrate concentration; and (3) in a steady state system specific rate of uptake (in the absence of significant, excretion) is necessarily the product of the specific growth rate and internal substrate concentration. The implications of this model are discussed in particular in respect to the concept of luxury consumption and Liebig's law of minimum. Some aspects of uptake in transient situations are also discussed.  相似文献   

20.
Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and metabolism under conditions of uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号