首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphogenesis of drosophila macrochaete functioning as mechanoreceptors includes several steps, each of which has their own genetic support described in terms of gene nets. Mechanoreceptor develops from one parental cell (Sensory Organ Precursor cell—SOP cell), the determination of which has a critical role in macrochaete development. The highest content of AS-C proneural proteins with respect to surrounding cells that initiate a neural way of cellular development and by means of it mechanoreceptor morphogenesis is typical for SOP cell. The key object of gene net providing parental cell determination consists of gene complex achaete-scute (AS-C). This complex activity is controlled by central regulatory contour (CRC). Besides AS-C, CRC includes the following genes: hairy, senseless (sens), charlatan (chn), scratch (scrt), daughterless (da), extramacrochaete (emc), and groucho (gro). The system of direct relation and feedback and induction and repression relations between CRC components are realized via the coding by these genes proteins. A mathematical model of CRC functioning as a regulator of proneural AS-C protein content in SOP cell determining successful passing of the main phase of morphogenesis of D. melanogaster mechanoreceptor is discussed.  相似文献   

2.
3.
An early step in the development of the large mesothoracic bristles (macrochaetae) of Drosophila is the expression of the proneural genes of the achaete-scute complex (AS-C) in small groups of cells (proneural clusters) of the wing imaginal disc. This is followed by a much increased accumulation of AS-C proneural proteins in the cell that will give rise to the sensory organ, the SMC (sensory organ mother cell). This accumulation is driven by cis-regulatory sequences, SMC-specific enhancers, that permit self-stimulation of the achaete, scute and asense proneural genes. Negative interactions among the cells of the cluster, triggered by the proneural proteins and mediated by the Notch receptor (lateral inhibition), block this accumulation in most cluster cells, thereby limiting the number of SMCs. Here we show that the proneural proteins trigger, in addition, positive interactions among cells of the cluster that are mediated by the Epidermal growth factor receptor (EGFR) and the Ras/Raf pathway. These interactions, which we denominate 'lateral co-operation', are essential for macrochaetae SMC emergence. Activation of the EGFR/Ras pathway appears to promote proneural gene self-stimulation mediated by the SMC-specific enhancers. Excess EGFR signalling can overrule lateral inhibition and allow adjacent cells to become SMCs and sensory organs. Thus, the EGFR and Notch pathways act antagonistically in notum macrochaetae determination.  相似文献   

4.
5.
6.
The asense (ase) gene of the achaete-scute complex (AS-C) is expressed in the precursors of all adult sensory organs (SOs), the sensory mother cells (SMCs) and in their immediate progeny. Its deletion causes the loss of some SOs and the abnormal differentiation of part of the remaining ones. These defects, which include malformations of the external part of the SOs, duplication of the innervating neuron etc, are enhanced by the haploid condition for the other AS-C genes and are corrected by an ase transgene. We conclude that ase participates, in combination with other members of the AS-C, in implementing the neural program of differentiation of the SMCs. ase also has a proneural function that participates in the singling out of the SMCs that give rise to the recurved bristles of the anterior wing margin. The proneural potential of ase is shown, in addition, by the generation of SOs induced by the generalized expression of an ase gene driven by a hsp70 promoter.  相似文献   

7.
8.
TheEnhancer of split andachaete-scute gene complexes [E(spl)-C and AS-C] encode helix-loop-helix proteins required for neurogenesis inDrosophila. Using a heterologous bacterial system, we show that (i) the bHLH domains of the proteins encoded by the two gene complexes differ in their ability to form homo- and/or heterodimers; (ii) the bHLH domains of the E(spl)-C proteins m5, m7 and m8 interact with the bHLH domains of the Ac and Sc proteins. These bHLH domains form an interaction network which may represent the molecular mechanism whereby the competent state of the proneural cells is maintained until the terminal determination to neuroblast occurs. Also, the pattern of interactions of the bHLH domains of certain proteins encoded by the two gene complexes may explain their functional redundancy.  相似文献   

9.
10.
TheEnhancer of split andachaete-scute gene complexes [E(spl)-C and AS-C] encode helix-loop-helix proteins required for neurogenesis inDrosophila. Using a heterologous bacterial system, we show that (i) the bHLH domains of the proteins encoded by the two gene complexes differ in their ability to form homo- and/or heterodimers; (ii) the bHLH domains of the E(spl)-C proteins m5, m7 and m8 interact with the bHLH domains of the Ac and Sc proteins. These bHLH domains form an interaction network which may represent the molecular mechanism whereby the competent state of the proneural cells is maintained until the terminal determination to neuroblast occurs. Also, the pattern of interactions of the bHLH domains of certain proteins encoded by the two gene complexes may explain their functional redundancy.  相似文献   

11.
The Drosophila embryonic central nervous system develops from sets of progenitor neuroblasts which segregate from the neuroectoderm during early embryogenesis. Cells within this region can follow either the neural or epidermal developmental pathway, a decision guided by two opposing classes of genes. The proneural genes, including the members of the achaete-scute complex (AS-C), promote neurogenesis, while the neurogenic genes prevent neurogenesis and facilitate epidermal development. To understand the role that proneural gene expression and regulation play in the choice between neurogenesis and epidermogenesis, we examined the temporal and spatial expression pattern of the achaete (ac) regulatory protein in normal and neurogenic mutant embryos. The ac protein is first expressed in a repeating pattern of four ectodermal cell clusters per hemisegment. Even though 5-7 cells initially express ac in each cluster, only one, the neuroblast, continues to express ac. The repression of ac in the remaining cells of the cluster requires zygotic neurogenic gene function. In embryos lacking any one of five genes, the restriction of ac expression to single cells does not occur; instead, all cells of each cluster continue to express ac, enlarge, delaminate and become neuroblasts. It appears that one key function of the neurogenic genes is to silence proneural gene expression within the nonsegregating cells of the initial ectodermal clusters, thereby permitting epidermal development.  相似文献   

12.
13.
14.
The genes of the achaete-scute complex (AS-C) confer on cells the ability to become neural precursors. Their expression is restricted to groups of cells, the proneural clusters, which occupy specific positions within the embryo neural anlagen and the larva imaginal discs. Neuroblasts or sensory organ mother cells are born within these clusters. Thus, the patterns of expression of the AS-C genes help to define the topology of the nervous system.  相似文献   

15.
H M Ellis  D R Spann  J W Posakony 《Cell》1990,61(1):27-38
The function of the extramacrochaetae (emc) gene is required to establish the normal spatial pattern of adult sensory organs in Drosophila. emc acts to suppress sensory organ development in certain regions of the body surface, apparently by antagonizing the function of the achaete and scute genes of the achaetescute complex (AS.C). We have found that emc encodes a novel member of the helix-loop-helix (HLH) family of proteins. The emc protein shares the dimerization domain of other HLH proteins but lacks their DNA binding motif. We propose a model in which the emc protein negatively regulates sensory organ determination by forming heterodimers with the HLH proteins encoded by the AS-C and/or daughterless, thereby altering or interfering with their activity.  相似文献   

16.
17.
18.
1. We have analysed the development of the larval PNS of Drosophila, with the aim of understanding the genetic programme that underlies this development. 2. The achaete-scute gene complex (AS-C), which is required for the development of the adult PNS, is also necessary for the larval PNS. The analysis of different AS-C lesions shows that the larval PNS results from the superimposition of two independent subpatterns, each of which depends on one AS-C gene. 3. The analysis of the two subpatterns reveals hidden homologies between the very different arrangements of sense organs observed on different segments, suggesting that the initial pattern is the same in all segments and is later modified in the different segments. 4. The early arrangement of sensory mother cells can be visualised in a special transgenic line, A37. In this line the initial repetitive pattern inferred above can be directly observed. Furthermore this line makes it possible to decide whether a given mutation acts on the very early steps of the PNS development (determination) or at later stages (differentiation). 5. The line A37 has been used to show that mutations that reduce the PNS such as AS-C- or da- alter the very first steps of the process, while mutations which result in a hypertrophied PNS such as N seem to alter a subsequent step. We end up with an overview of the genetic operations that generate the arrangement of sense organs and sensory neurons.  相似文献   

19.
20.
Gu J  Chen XP 《遗传》2011,33(11):1185-1190
哺乳动物的神经发育经历一系列神经前体细胞的形态结构和机能改变,其细胞周期时程也呈现动态变化,从神经发生早期至后期,神经前体细胞的细胞周期时程逐渐延长,并与细胞发育命运转归有关,其调节因素包括周期蛋白复合体、Notch信号通路、原神经基因靶向蛋白、微管与分子马达蛋白等。细胞周期长度假说认为,细胞周期的长度影响到命运决定子的积累,因而决定细胞的命运。文章综述了相关的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号