首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the heat shock proteins (HSPs) of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. To improve our understanding of sHSPs, we have characterized RcHSP17.8 from Rosa chinensis . Sequence alignments and phylogenetic analysis reveal this to be a cytosolic class I sHSP. RcHSP17.8 expression in R. chinensis was induced by heat, cold, salt, drought, osmotic and oxidative stresses. Recombinant RcHSP17.8 was overexpressed in Escherichia coli and yeast to study its possible function under stress conditions. The recombinant E. coli and yeast cells that accumulated RcHSP17.8 showed improved viability under thermal, salt and oxidative stress conditions compared with control cultures. We also produced transgenic Arabidopsis thaliana that constitutively expressed RcHSP17.8. These plants exhibited increased tolerance to heat, salt, osmotic and drought stresses. These results suggest that R. chinensis cytosolic class I sHSP (RcHSP17.8) has the ability to confer stress resistance not only to E. coli and yeast but also to plants grown under a wide variety of unfavorable environmental conditions.  相似文献   

2.
3.
Arabidopsis plants possess a family of nine AtAtg8 gene homologues of the yeast autophagy-associated Apg8/Aut7 gene. To gain insight into how these genes function in plants, first, the expression patterns of five AtAtg8 homologues were analysed in young Arabidopsis plants grown under favourable growth conditions or following exposure to prolonged darkness or sugar starvation. Promoters, plus the entire coding regions (exons and introns) of the AtAtg8 genes, were fused to the beta-glucuronidase reporter gene and transformed into Arabidopsis plants. In all plants, grown under favourable growth conditions, beta-glucuronidase staining was much more significant in roots than in shoots. Different genes showed distinct spatial and temporal expression patterns in roots. In some transgenic plants, beta-glucuronidase staining in leaves was induced by prolonged darkness or sugar starvation. Next, Arabidopsis plants were transformed with chimeric gene-encoding Atg8f protein fused to N-terminal green fluorescent protein and C-terminal haemagglutinin epitope tags. Analysis of these plants showed that, under favourable growth conditions, the Atg8f protein is efficiently processed and is localized to autophagosome-resembling structures, both in the cytosol and in the central vacuole, in a similar manner to its processing and localization under starvation stresses. Moreover, treatment with a cocktail of proteasome inhibitors did not prevent the turnover of this protein, implying that its turnover takes place in the vacuoles, as occurs in yeasts. The results suggest that, in plants, the cellular processes involving the Atg8 genes function efficiently in young, non-senescing tissues, both under favourable growth conditions and under starvation stresses.  相似文献   

4.
《Autophagy》2013,9(7):954-963
Autophagy is a protein degradation process in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Upon the induction of autophagy, a double membrane autophagosome forms around cytoplasmic components and delivers them to the vacuole or lysosome for degradation. In plants, autophagy has been shown previously to be induced during abiotic stresses including nutrient starvation and oxidative stress. In this paper, we demonstrate the induction of autophagy in high salt and osmotic stress conditions, concomitant with the upregulation of expression of an Arabidopsis thaliana autophagy-related gene AtATG18a. Autophagy-defective RNAi-AtATG18a plants are more sensitive to salt and drought conditions than wild-type plants, demonstrating a role for autophagy in the response to these stresses. NADPH oxidase inhibitors block autophagy induction upon nutrient starvation and salt stress, but not during osmotic stress, indicating that autophagy can be activated by NADPH oxidase-dependent or -independent pathways. Together our results indicate that diverse environmental stresses can induce autophagy and that autophagy is regulated by distinct signaling pathways in different conditions.  相似文献   

5.
Yang P  Zhang H 《Autophagy》2011,7(2):159-165
Macroautophagy (hereafter referred to as autophagy) involves the formation of a closed, double membrane structure, called the autophagosome. Most of the Atg proteins that are essential for autophagosome formation are evolutionarily conserved between yeast and higher eukaryotes. The functions of some Atg proteins, however, are mediated by highly divergent proteins in mammalian cells. In this study, we identified a novel coiled-coil domain protein, EPG-8, that plays an essential role in the autophagy pathway in C. elegans. Mutations in epg-8 cause defects in degradation of various autophagy substrates and also compromise survival of animals under nutrient-depletion conditions. In epg-8 mutants, lipidated LGG-1 (the C. elegans Atg8 homolog) accumulates but does not form distinct punctate structures. EPG-8 directly interacts with the C. elegans Beclin 1 homolog, BEC-1. Our study demonstrates that epg-8 may function as a highly divergent homolog of the yeast autophagy gene Atg14.  相似文献   

6.
Cdc14 protein phosphatase is critical for late mitosis progression in budding yeast, although its orthologs in other organisms, including mammalian cells, function as stress-responsive phosphatases. We found herein unexpected roles of Cdc14 in autophagy induction after nutrient starvation and target of rapamycin complex 1 (TORC1) kinase inactivation. TORC1 kinase phosphorylates Atg13 to repress autophagy under nutrient-rich conditions, but if TORC1 becomes inactive upon nutrient starvation or rapamycin treatment, Atg13 is rapidly dephosphorylated and autophagy is induced. Cdc14 phosphatase was required for optimal Atg13 dephosphorylation, pre-autophagosomal structure formation, and autophagy induction after TORC1 inactivation. In addition, Cdc14 was required for sufficient induction of ATG8 and ATG13 expression. Moreover, Cdc14 activation provoked autophagy even under normal conditions. This study identified a novel role of Cdc14 as the stress-responsive phosphatase for autophagy induction in budding yeast.  相似文献   

7.
Selective autophagy, mediated by Atg8 binding proteins, has not been extensively studied in plants. Plants possess a large gene family encoding multiple isoforms of the Atg8 protein. We have recently reported the identification of two new, closely homologous Arabidopsis thaliana plant proteins that bind the Arabidopsis Atg8f protein isoform. These two proteins are specific to plants and have no homologs in nonplant organisms. The expression levels of the genes encoding these proteins are elevated during carbon starvation and also during late stages of seed development. Exposure of young seedlings to carbon starvation induces the production of a newly identified compartment decorated by these Atg8-binding proteins. This compartment dynamically moves along the endoplasmic reticulum membrane and is also finally transported into the vacuole. Enhanced or suppressed expression of these Atg8-binding proteins respectively enhances or suppresses seed germination under suboptimal germination conditions, indicating that they contribute to seed germination vigor.  相似文献   

8.
Yeast Atg2, an autophagy-related protein, is highly conserved in other fungi and has two homologues in humans, one of which is hAtg2A encoded by the hATG2A/KIAA0404 gene. Region of homology between Atg2 and hAtg2A proteins comprises the C-terminal domain. We used yeast atg2D strain to express the GFP-KIAA0404 gene, its fragment or fusions with yeast ATG2, and study their effects on autophagy. The GFP-hAtg2A protein localized to punctate structures, some of which colocalized with Ape1-RFP-marked preautophagosomal structure (PAS), but it did not restore autophagy in atg2Δ cells. N-terminal fragment of Atg2 and N-terminal fragment of hAtg2A were sufficient for PAS recruitment but were not sufficient to function in autophagy. Neither a fusion of the N-terminal fragment of hAtg2A with C-terminal domain of Atg2 nor a reciprocal fusion were functional in autophagy. hAtg2A, in contrast to yeast Atg2, did not show interaction with the yeast autophagy protein Atg9 but both Atg2 proteins showed interaction with Atg18, a phospholipid-binding protein, in two-hybrid system. Moreover, deletion of ATG18 abrogated PAS recruitment of hAtg2A. Our results show that human hAtg2A can not function in autophagy in yeast, however, it is recruited to the PAS, possibly due to the interaction with Atg18.  相似文献   

9.
《Autophagy》2013,9(5):838-839
Selective autophagy, mediated by Atg8 binding proteins, has not been extensively studied in plants. Plants possess a large gene family encoding multiple isoforms of the Atg8 protein. We have recently reported the identification of two new, closely homologous Arabidopsis thaliana plant proteins that bind the Arabidopsis Atg8f protein isoform. These two proteins are specific to plants and have no homologs in nonplant organisms. The expression levels of the genes encoding these proteins are elevated during carbon starvation and also during late stages of seed development. Exposure of young seedlings to carbon starvation induces the production of a newly identified compartment decorated by these Atg8-binding proteins. This compartment dynamically moves along the endoplasmic reticulum membrane and is also finally transported into the vacuole. Enhanced or suppressed expression of these Atg8-binding proteins respectively enhances or suppresses seed germination under suboptimal germination conditions, indicating that they contribute to seed germination vigor.  相似文献   

10.
Many plants accumulate proline (Pro) when suffered from drought; thus, the relationship between Pro accumulation and plant drought tolerance becomes an increasing concern. Pro is synthesized from either glutamine or ornithine, and the former pathway dominates under osmotic stress conditions. In this study, the dynamic accumulation of free Pro under drought stress in 10 genotypes of Tibetan hulless barley (Hordeum vulgare var. nudum) with water lose rate (WLR) of 0.3304 to 0.5839 g/(h g dry wt) was investigated. However, no correlation between Pro accumulation and drought tolerance was found. Furthermore, the barley stripe mosaic virus establisheding virus-induced gene silencing was employed to suppress the expression of the encoding gene Δ1-Pyrroline-5-Carboxylate Synthetase (P5CS), which catalyzes the ratelimiting step of Glu pathway in Pro biosynthesis. By the quantitative real-time polymerase chain reaction, the decrease of the P5CS expression was found, and a consequent Pro degradation was also detected in P5CS-silenced plants. However, neither increased WLR of detached leaves nor decreased survival rate under drought stress was found compared with control plants. These results suggested that the repressed expression of P5CS and decreased content of free Pro may not interfere with the drought tolerance of Tibetan hulless barley.  相似文献   

11.
Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8. To gain insights into autophagy in malaria parasites, we investigated Plasmodium falciparum Atg8 (PfAtg8) employing techniques and conditions that are routinely used to study autophagy. Atg8 was similarly expressed and showed punctate localization throughout the parasite in both asexual and sexual stages; it was exclusively found in the pellet fraction as an integral membrane protein, which is in contrast to the yeast or mammalian Atg8 that is distributed among cytosolic and membrane fractions, and suggests for a constitutive autophagy. Starvation, the best known autophagy inducer, decreased PfAtg8 level by almost 3-fold compared to the normally growing parasites. Neither the Atg8-associated puncta nor the Atg8 expression level was significantly altered by treatment of parasites with routinely used autophagy inhibitors (cysteine (E64) and aspartic (pepstatin) protease inhibitors, the kinase inhibitor 3-methyladenine, and the lysosomotropic agent chloroquine), indicating an atypical feature of autophagy. Furthermore, prolonged inhibition of the major food vacuole protease activity by E64 and pepstatin did not cause accumulation of the Atg8-associated puncta in the food vacuole, suggesting that autophagy is primarily not meant for degradative function in malaria parasites. Atg8 showed partial colocalization with the apicoplast; doxycycline treatment, which disrupts apicoplast, did not affect Atg8 localization, suggesting a role, but not exclusive, in apicoplast biogenesis. Collectively, our results reveal several atypical features of autophagy in malaria parasites, which may be largely associated with non-degradative processes.  相似文献   

12.
Autophagy is a response to the stress of nutrient limitation in yeast, whereby cytosolic long-lived proteins and organelles are nonselectively degraded, and the resulting macromolecules are recycled to allow new protein synthesis that is essential for survival. We recently revealed that endoplasmic reticulum (ER) stress induces autophagy. When misfolded proteins accumulate in the ER the resulting stress activates the unfolded protein response (UPR) to induce the expression of chaperones and proteins involved in the recovery process. Under conditions of ER stress, the preautophagosomal structure is assembled, and transport of autophagosomes to the vacuole is stimulated in an Atg protein-dependent manner. Interestingly, Atg1 has high kinase activity during ER stress-induced autophagy similar to the situation in starvation-induced autophagy.  相似文献   

13.
Arbuscular mycorrhizal (AM) symbiosis, established between AM fungi (AMF) and roots of higher plants, occurs in most terrestrial ecosystems. It has been well demonstrated that AM symbiosis can improve plant performance under various environmental stresses, including drought stress. However, the molecular basis for the direct involvement of AMF in plant drought tolerance has not yet been established. Most recently, we cloned two functional aquaporin genes, GintAQPF1 and GintAQPF2, from AM fungus Glomus intraradices. By heterologous gene expression in yeast, aquaporin localization, activities and water permeability were examined. Gene expressions during symbiosis in expose to drought stress were also analyzed. Our data strongly supported potential water transport via AMF to host plants. As a complement, here we adopted the monoxenic culture system for AMF, in which carrot roots transformed by Ri-T DNA were cultured with Glomus intraradices in two-compartment Petri dishes, to verify the aquaporin gene functions in assisting AMF survival under polyethylene glycol (PEG) treatment. Our results showed that 25% PEG significantly upregulated the expression of two aquaporin genes, which was in line with the gene functions examined in yeast. We therefore concluded that the aquaporins function similarly in AMF as in yeast subjected to osmotic stress. The study provided further evidence to the direct involvement of AMF in improving plant water relations under drought stresses.  相似文献   

14.
Autophagy is a highly conserved process primarily known for its role in cellular adaptation to nutritional stress. This bulk protein degradation pathway relocates nutrients during starvation. Recent studies, however, have revealed essential roles of autophagy in various organs under normal conditions. Especially, autophagy is now recognized as the pathway responsible for the elimination of damaged proteins resulting from environmental stress. Lungs are constantly exposed to high oxygen tension and environmental chemicals. To investigate the importance of autophagy in lung physiology, we used an inducible system to ablate Atg7 expression, which is a protein essential for autophagy, in the respiratory epithelial cells of adult mice. We found that Atg7 deficiency caused swelling of bronchiolar epithelial cells and accumulation of p62, which links substrate proteins to the autophagy machinery. Bronchiolar epithelial cells, isolated by micro-dissection of lung tissues, had elevated expression of cytoprotective genes that are typically activated by Nrf2. Interestingly, Atg7-deficient lungs displayed hyper-responsiveness to cholinergic stimuli without apparent inflammatory signs. Swollen bronchiolar epithelial cells may have lead to mechanical airway constriction and lowered the threshold for the increase of airway resistance. This study demonstrates the critical role of autophagy in the lungs for the maintenance of pulmonary homeostasis.  相似文献   

15.
Two allelic Arabidopsis mutants, leaf wilting 2-1 and leaf wilting 2-2 (lew2-1 and lew2-2 ), were isolated in a screen for plants with altered drought stress responses. The mutants were more tolerant to drought stress as well as to NaCl, mannitol and other osmotic stresses. lew2 mutant plants accumulated more abscisic acid (ABA), proline and soluble sugars than the wild type. The expression of a stress-inducible marker gene RD29A, a proline synthesis-related gene P5CS (pyrroline-5-carboxylate synthase) and an ABA synthesis-related gene SDR1 (alcohol dehydrogenase/reductase) was higher in lew2 than in the wild type. Map-based cloning revealed that the lew2 mutants are new alleles of the AtCesA8/IRX1 gene which encodes a subunit of a cellulose synthesis complex. Our results suggest that cellulose synthesis is important for drought and osmotic stress responses including drought induction of gene expression.  相似文献   

16.
17.
Fluorescence microscopy of live cells is instrumental in deciphering the molecular details of autophagy. To facilitate the routine examination of yeast Atg proteins under diverse conditions, here we provide a comprehensive tool set, including (1) plasmids for the expression of GFP chimeras at endogenous levels for most Atg proteins, (2) RFP-Atg8 constructs with improved properties as a PAS marker, and (3) plasmids for the complementation of common yeast auxotrophic markers. We hope that the availability of this tool set will further accelerate yeast autophagy research.  相似文献   

18.
Structure of Atg5.Atg16, a complex essential for autophagy   总被引:2,自引:0,他引:2  
Atg5 is covalently modified with a ubiquitin-like modifier, Atg12, and the Atg12-Atg5 conjugate further forms a complex with the multimeric protein Atg16. The Atg12-Atg5.Atg16 multimeric complex plays an essential role in autophagy, the bulk degradation system conserved in all eukaryotes. We have reported here the crystal structure of Atg5 complexed with the N-terminal region of Atg16 at 1.97A resolution. Atg5 comprises two ubiquitin-like domains that flank a helix-rich domain. The N-terminal region of Atg16 has a helical structure and is bound to the groove formed by these three domains. In vitro analysis showed that Arg-35 and Phe-46 of Atg16 are crucial for the interaction. Atg16, with a mutation at these residues, failed to localize to the pre-autophagosomal structure and could not restore autophagy in Atg16-deficient yeast strains. Furthermore, these Atg16 mutants could not restore a severe reduction in the formation of the Atg8-phosphatidylethanolamine conjugate, another essential factor for autophagy, in Atg16-deficient strains under starvation conditions. These results taken together suggest that the direct interaction between Atg5 and Atg16 is crucial to the performance of their roles in autophagy.  相似文献   

19.
In eukaryotic cells, nutrient starvation induces the bulk degradation of cellular materials; this process is called autophagy. In the yeast Saccharomyces cerevisiae, most of the ATG (autophagy) genes are involved in not only the process of degradative autophagy, but also a biosynthetic process, the cytoplasm to vacuole (Cvt) pathway. In contrast, the ATG17 gene is required specifically in autophagy. To better understand the function of Atg17, we have performed a biochemical characterization of the Atg17 protein. We found that the atg17delta mutant under starvation condition was largely impaired in autophagosome formation and only rarely contained small autophagosomes, whose size was less than one-half of normal autophagosomes in diameter. Two-hybrid analyses and coimmunoprecipitation experiments demonstrated that Atg17 physically associates with Atg1-Atg13 complex, and this binding was enhanced under starvation conditions. Atg17-Atg1 binding was not detected in atg13delta mutant cells, suggesting that Atg17 interacts with Atg1 through Atg13. A point mutant of Atg17, Atg17(C24R), showed reduced affinity for Atg13, resulting in impaired Atg1 kinase activity and significant defects in autophagy. Taken together, these results indicate that Atg17-Atg13 complex formation plays an important role in normal autophagosome formation via binding to and activating the Atg1 kinase.  相似文献   

20.
Plants frequently face challenges caused by various abiotic stresses, including drought, and have evolved defense mechanisms to counteract the deleterious effects of these stresses. The phytohormone abscisic acid (ABA) is involved in signal transduction pathways that mediate defense responses of plants to abiotic stress. Here, we report a new function of the CaDIN1 protein in defense responses to abiotic stress. The CaDIN1 gene was strongly induced in pepper leaves exposed to ABA, NaCl, and drought stresses. CaDIN1 proteins share high sequence homology with other known DIN1 proteins and are localized in chloroplasts. We generated CaDIN1-silenced peppers and overexpressing transgenic Arabidopsis plants and evaluated their response to ABA and drought stress. Virus-induced gene silencing of CaDIN1 in pepper plants conferred enhanced tolerance to drought stress, which was accompanied by low levels of lipid peroxidation in dehydrated leaves. CaDIN1-overexpressing transgenic plants exhibited reduced sensitivity to ABA during seed germination and seedling stages. Transgenic plants were more vulnerable to drought than that by the wild-type plants because of decreased expression of ABA responsive stress-related genes and reduced stomatal closure in response to ABA. Together, these results suggest that CaDIN1 modulates drought sensitivity through ABA-mediated cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号