首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the formation of phosphorylated ataxia telangiectasia mutated (ATM) foci in exponentially growing normal human diploid cells exposed to low doses of X rays. Phosphorylated ATM foci were detected immediately after irradiation, and the number of foci decreased as the time after irradiation increased. The kinetics of phosphorylated ATM foci was comparable to that of phosphorylated histone H2AX. We found that there were fewer spontaneous phosphorylated ATM foci than that phosphorylated histone H2AX foci. Notably, significant numbers of phosphorylated histone H2AX foci, but not phosphorylated ATM foci, were detected in the S-phase cells. The induction of foci showed a linear dose-response relationship with doses ranging for 10 mGy to 1 Gy, and the average number of phosphorylated ATM foci per gray was approximately 50. The average size of the foci was comparable for the cells irradiated with 20 mGy and 1 Gy, and there was no significant difference in the kinetics of disappearance of foci, indicating that DNA double-strand breaks are similarly recognized by DNA damage checkpoints and are repaired irrespective of the dose.  相似文献   

2.
Kegel P  Riballo E  Kühne M  Jeggo PA  Löbrich M 《DNA Repair》2007,6(11):1692-1697
Immunofluorescence detection of gammaH2AX foci is a widely used tool to quantify the induction and repair of DNA double-strand breaks (DSBs) induced by ionising radiation. We observed that X-irradiation of mammalian cells exposed on glass slides induced twofold higher foci numbers compared to irradiation with gamma-rays. Here, we show that the excess gammaH2AX foci after X-irradiation are produced from secondary radiation particles generated from the irradiation of glass slides. Both 120 kV X-rays and (137)Cs gamma-rays induce approximately 20 gammaH2AX foci per Gy in cells growing on thin ( approximately 2 microm) plastic foils immersed in water. The same yield is obtained following gamma-irradiation of cells growing on glass slides. However, 120 kV X-rays produce approximately 40 gammaH2AX foci per Gy in cells growing on glass, twofold greater than obtained using cells irradiated on plastic surfaces. The same increase in gammaH2AX foci number is obtained if the plastic foil on which the cells are grown is irradiated on a glass slide. Thus, the physical proximity to the glass material and not morphological differences of cells growing on different surfaces accounts for the excess gammaH2AX foci. The increase in foci number depends on the energy and is considerably smaller for 25 kV relative to 120 kV X-rays, a finding which can be explained by known physical properties of radiation. The kinetics for the loss of foci, which is taken to represent the rate of DSB repair, as well as the Artemis dependent repair fraction, was similar following X- or gamma-irradiation, demonstrating that DSBs induced by this range of treatments are repaired in an identical manner.  相似文献   

3.
Microscopically visible gammaH2AX foci signify the presence of DNA double-strand breaks (dsbs) in irradiated cells. However, large foci are also observed in untreated tumour cells, and high numbers reduce the sensitivity for detecting drug or radiation-induced DNA breaks. SW756 cervical carcinoma cells that express about 50 gammaH2AX foci per cell (i.e., equivalent to the number of breaks produced by about 2Gy) showed similar numbers of dsbs as C33A cells that exhibit fewer than three foci per cell. The possibility that differences in numbers of these endogenous foci could be explained by genomic instability perhaps related to misrepair was examined. For 17cell lines selected from the panel of NCI-60 tumor cells previously characterized for karyotypic complexity [A.V. Roschke, G. Tonon, K.S. Gehlhaus, N. McTyre, K.J. Bussey, S. Lababidi, D.A. Scudiero, J.N. Weinstein, I.R. Kirsch, Karyotypic complexity of the NCI-60 drug-screening panel, Cancer Res. 63 (2003) 8634-8647], there was a significant trend (r=0.6) for cell lines with greater numbers of structural or numerical chromosomal rearrangements to show a higher background expression of gammaH2AX. Moreover, cells from this panel with wild-type p53 showed a significantly lower background level of gammaH2AX than cells with mutant p53. To confirm the importance of p53 expression, endogenous and radiation-induced gammaH2AX expression were analyzed using four isogenic SKOV3 cell lines varying in p53 function. Again, higher gammaH2AX expression was found in SKOV3 cell lines expressing mutant p53 compared to wild-type p53. HFL-1 primary lung fibroblasts showed a progressive increase in gammaH2AX as they moved towards senescence, confirming the importance of telomere instability in the development of at least some gammaH2AX foci. Therefore, the explanation for high endogenous levels of gammaH2AX in some tumor cells appears to be multifactorial and may be best described as a consequence of chromatin instability.  相似文献   

4.
Ojima M  Ban N  Kai M 《Radiation research》2008,170(3):365-371
Ojima, M., Ban, N. and Kai, M. DNA Double-Strand Breaks Induced by Very Low X-Ray Doses are Largely due to Bystander Effects. Radiat. Res. 170, 365-371 (2008).Phosphorylated ATM immunofluorescence staining was used to investigate the dose-response relationship for the number of DNA double-strand breaks (DSBs) induced in primary normal human fibroblasts irradiated with doses from 1.2 to 200 mGy. The induction of DSBs showed a supralinear dose-response relationship. Radiation-induced bystander effects may explain these findings. To test this hypothesis, the number of DSBs in cells treated with lindane, an inhibitor of radiation-induced bystander effects, prior to X irradiation was assessed; a supralinear dose-response relationship was not observed. Moreover, the number of DSBs obtained by subtracting the number of phosphorylated ATM foci in lindane-treated cells from the number of phosphorylated ATM foci in untreated cells was proportional to the dose at low doses (1.2-5 mGy) and was saturated at doses from 10-200 mGy. Thus the increase in the number of DSBs in the range of 1.2-5 mGy was largely due to radiation-induced bystander effects, while at doses >10 mGy, the DSBs may be induced mainly by dose-dependent direct radiation effects and partly by dose-independent radiation-induced bystander effects. The findings in our present study provide direct evidence of the dose-response relationship for radiation-induced bystander effects from broad-beam X rays.  相似文献   

5.
Phosphorylation of histone H2AX at serine 139 occurs at sites surrounding DNA double-strand breaks, producing discrete spots called "foci" that are visible with a microscope after antibody staining. This modification is believed to create changes in chromatin structure and assemble various repair proteins at sites of DNA damage. To examine the role of chromatin structure, human SiHa cells were exposed to hypertonic salt solutions that are known to condense chromatin and sensitize cells to chromosome damage and killing by ionizing radiation. Postirradiation incubation in 0.5 M Na(+) increased gammaH2AX expression about fourfold as measured by flow cytometry and immunoblotting, and loss of gammaH2AX was inhibited in the presence of high salt. Focus size rather than the number of radiation-induced gammaH2AX foci was also increased about fourfold. When high-salt treatment was delayed for 1 h after irradiation, effects on focus size and retention were reduced. The increase in focus size was associated with a decrease in the rate of rejoining of double-strand breaks as measured using the neutral comet assay. We conclude that gammaH2AX expression after irradiation is sensitive to salt-induced changes in chromatin structure during focus formation, and that a large focus size may be an indication of a reduced ability to repair DNA damage.  相似文献   

6.
Reitsema T  Klokov D  Banáth JP  Olive PL 《DNA Repair》2005,4(10):1172-1181
Exposure of cells to hypertonic medium after X-irradiation results in a 3-4-fold increase in the phosphorylation of histone H2AX (gammaH2AX) at sites of radiation-induced DNA double-strand breaks. This increase was previously associated with salt-induced radiosensitization and inhibition of repair of DNA double-strand breaks. To examine possible mechanisms for the increase in foci size, chemical inhibitors of kinase and phosphatase activity and cell lines deficient in ATM and DNA-PK, two kinases known to phosphorylate H2AX, were examined. H2AX kinase and phosphatase activity were maintained in the presence of high salt. ATM mutant HT144 melanoma cells showed the expected 3-4-fold increase in H2AX phosphorylation in the presence of 0.5M Na(+). However, DNA-PKcs deficient M059J cells failed to respond to hypertonic treatment and M059J Fus1 cells corrected for this deficiency showed the expected increase in foci size. Although the active phosphoform of ATM, phosphoserine-1981, increased after irradiation, the level was unaffected by the addition of 0.5M Na(+). Instead, 0.5M Na(+) caused a partial redistribution of serine-1981-ATM to perinuclear regions. Hypertonic medium added after irradiation was effective in inhibiting rejoining of the radiation-induced double-strand breaks even in DNA-PK deficient M059J cells. We suggest that hypertonic treatment following irradiation inhibits double-strand break rejoining that in turn maintains DNA-PK activity at the site of the break, enhancing the size of the gammaH2AX foci.  相似文献   

7.
Exposure of cells to ionizing radiation causes phosphorylation of histone H2AX at sites flanking DNA double-strand breaks. Detection of phosphorylated H2AX (gammaH2AX) by antibody binding has been used as a method to identify double-strand breaks. Although generally performed by observing microscopic foci within cells, flow cytometry offers the advantage of measuring changes in gammaH2AX intensity in relation to cell cycle position. The importance of cell cycle position on the levels of endogenous and radiation-induced gammaH2AX was examined in cell lines that varied in DNA content, cell cycle distribution, and kinase activity. Bivariate analysis of gammaH2AX expression relative to DNA content and synchronization by centrifugal elutriation were used to measure cell cycle-specific expression of gammaH2AX. With the exception of xrs5 cells, gammaH2AX level was approximately 3 times lower in unirradiated G(1)-phase cells than S- and G(2)-phase cells, and the slope of the G(1)-phase dose-response curve was 2.8 times larger than the slope for S-phase cells. Cell cycle differences were confirmed using immunoblotting, indicating that reduced antibody accessibility in intact cells was not responsible for the reduced antibody binding in G(1)-phase cells. Early apoptotic cells could be easily identified on flow histograms as a population with 5-10-fold higher levels of gammaH2AX, although high expression was not maintained in apoptotic cells by 24 h. We conclude that expression of gammaH2AX is associated with DNA replication in unirradiated cells and that this reduces the sensitivity for detecting radiation-induced double-strand breaks in S- and G(2)-phase cells.  相似文献   

8.
Our previous study suggested that the DNA double-strand breaks (DSBs) induced by very low X-ray doses are largely due to bystander effects. The aim of this study was to verify whether DSBs created by radiation-induced bystander effects are likely to be repaired. We examined the generation of DSBs in cells by enumeration of phosphorylated ataxia telangiectasia mutated (ATM) foci, which are correlated with DSB repair, in normal human fibroblast cells (MRC-5) after X irradiation at doses ranging from 1 to 1000 mGy. At 24 h after irradiation, 100% (1.2 mGy), 58% (20 mGy), 12% (200 mGy) and 8.5% (1000 mGy) of the initial number of phosphorylated ATM foci were detected. The number of phosphorylated ATM foci in MRC-5 cells treated with lindane, an inhibitor of radiation-induced bystander effects, prior to X irradiation was assessed; phosphorylated ATM foci were not observed at 5 h (20 mGy) or 24 h (200 mGy) postirradiation. We also counted the number of phosphorylated ATM foci in MRC-5 cells cocultured with MRC-5 cells irradiated with 20 mGy. After 48 h of coculture, 81% of the initial numbers of phosphorylated ATM foci remained. These findings suggest that DSBs induced by the radiation-induced bystander effect persist for long periods, whereas DSBs induced by direct radiation effects are repaired relatively quickly.  相似文献   

9.
DNA double strand break (DSB) formation induced by ionizing radiation exposure is indicated by the DSB biomarkers γ-H2AX and 53BP1. Knowledge about DSB foci formation in-vitro after internal irradiation of whole blood samples with radionuclides in solution will help us to gain detailed insights about dose-response relationships in patients after molecular radiotherapy (MRT). Therefore, we studied the induction of radiation-induced co-localizing γ-H2AX and 53BP1 foci as surrogate markers for DSBs in-vitro, and correlated the obtained foci per cell values with the in-vitro absorbed doses to the blood for the two most frequently used radionuclides in MRT (I-131 and Lu-177). This approach led to an in-vitro calibration curve. Overall, 55 blood samples of three healthy volunteers were analyzed. For each experiment several vials containing a mixture of whole blood and radioactive solutions with different concentrations of isotonic NaCl-diluted radionuclides with known activities were prepared. Leukocytes were recovered by density centrifugation after incubation and constant blending for 1 h at 37°C. After ethanol fixation they were subjected to two-color immunofluorescence staining and the average frequencies of the co-localizing γ-H2AX and 53BP1 foci/nucleus were determined using a fluorescence microscope equipped with a red/green double band pass filter. The exact activity was determined in parallel in each blood sample by calibrated germanium detector measurements. The absorbed dose rates to the blood per nuclear disintegrations occurring in 1 ml of blood were calculated for both isotopes by a Monte Carlo simulation. The measured blood doses in our samples ranged from 6 to 95 mGy. A linear relationship was found between the number of DSB-marking foci/nucleus and the absorbed dose to the blood for both radionuclides studied. There were only minor nuclide-specific intra- and inter-subject deviations.  相似文献   

10.
Ataxia telangiectasia (AT) and normal cells immortalized with the human telomerase gene were irradiated in non-proliferative conditions with high- (2 Gy/min) or low-dose-rate (0.3 mGy/min) radiation. While normal cells showed a higher resistance after irradiation at a low dose rate than a high dose rate, AT cells showed virtually the same survival after low- and high-dose-rate irradiation. Although the frequency of micronuclei induced by low-dose-rate radiation was greatly reduced in normal cells, it was not reduced significantly in AT cells. The number of gamma-H2AX foci increased in proportion to the dose in both AT and normal cells after high-dose-rate irradiation. Although few gamma-H2AX foci were observed after low-dose-rate irradiation in normal cells, significant and dose-dependent numbers of gamma-H2AX foci were observed in AT cells even after low-dose-rate irradiation, indicating that DNA damage was not completely repaired during low-dose-rate irradiation. Significant phosphorylation of ATM proteins was detected in normal cells after low-dose-rate irradiation, suggesting that the activation of ATM plays an important role in the repair of DNA damage during low-dose-rate irradiation. In conclusion, AT cells may not be able to repair some fraction of DNA damage and are severely affected by low-dose-rate radiation.  相似文献   

11.
The influence of p53 status on potentially lethal damage repair (PLDR) and DNA double-strand break (DSB) repair was studied in two isogenic human colorectal carcinoma cell lines: RKO (p53 wild-type) and RC10.1 (p53 null). They were treated with different doses of ionizing radiation, and survival and the induction of DNA-DSB were studied. PLDR was determined by using clonogenic assays and then comparing the survival of cells plated immediately with the survival of cells plated 24 h after irradiation. Doses varied from 0 to 8 Gy. Survival curves were analyzed using the linear-quadratic formula: S(D)/S(0) = exp-(αD+βD2). The γ-H2AX foci assay was used to study DNA DSB kinetics. Cells were irradiated with single doses of 0, 0.5, 1 and 2 Gy. Foci levels were studied in non-irradiated control cells and 30 min and 24 h after irradiation. Irradiation was performed with gamma rays from a 137Cs source, with a dose rate of 0.5 Gy/min. The RKO cells show higher survival rates after delayed plating than after immediate plating, while no such difference was found for the RC10.1 cells. Functional p53 seems to be a relevant characteristic regarding PLDR for cell survival. Decay of γ-H2AX foci after exposure to ionizing radiation is associated with DSB repair. More residual foci are observed in RC10.1 than in RKO, indicating that decay of γ-H2AX foci correlates with p53 functionality and PLDR in RKO cells.  相似文献   

12.
In this study, we investigated the formation of radiation-induced foci in normal human fibroblasts exposed to X rays or 130 keV/mum nitrogen ions using antibodies to phosphorylated protein kinase ataxia telangiectasia mutated (ATMp) and histone H2AX (gamma-H2AX). High-content automatic image analysis was used to quantify the immunofluorescence of radiation-induced foci. The size of radiation-induced foci increased for both proteins over a 2-h period after nitrogen-ion irradiation, while the size of radiation-induced foci did not change after exposure to low-LET radiation. The number of radiation-induced ATMp foci showed a more rapid rise and greater frequency after X-ray exposure and was resolved more rapidly such that the frequency of radiation-induced foci decreased by 90% compared to 60% after exposure to high-LET radiation 2 h after 30 cGy. In contrast, the kinetics of radiation-induced gamma-H2AX focus formation was similar for high- and low-LET radiation in that it reached a plateau early and remained constant for up to 2 h. High-resolution 3D images of radiation-induced gamma-H2AX foci and dosimetry computation suggest that multiple double-strand breaks from nitrogen ions are encompassed within large nuclear domains of 4.4 Mbp. Our work shows that the size and frequency of radiation-induced foci vary as a function of radiation quality, dose, time and protein target. Thus, even though double-strand breaks and radiation-induced foci are correlated, the dynamic nature of both contradicts their accepted equivalence for low doses of different radiation qualities.  相似文献   

13.
H2AX is a histone variant which is present and ubiquitously distributed throughout the genome. An immunocytochemical assay using antibodies capable of recognizing histone H2AX phosphorylated at serine 139 (gammaH2AX) is very sensitive and is a specific indicator for the existence of a DNA double strand break. Although heat stress has been reported to induce the formation of gammaH2AX foci, no gammaH2AX foci formation was observed in several mammalian cell lines after heat shock. Since this was in contrast to earlier reports, the work described here was intended to verify that heat-induced gammaH2AX foci do form in mammalian cell lines other than the cell lines used in earlier reports concerning gammaH2AX foci formation. The cell lines used in this work includes cell lines with differing p53-gene status (H1299, H1299/neo, H1299/mp53 and H1299/wtp53 cells), various cancer cell lines (HeLa, HepG2, U2-OS cells), normal human cells (HEK-293 and AG1522), and cell lines established from other species (MEF normal mouse cells and CHL normal Chinese hamster cells). Exponentially growing cells were exposed to heat shock (42 degrees C for 6 h or 45.5 degrees C for 20 min) or to X-rays (3Gy). The presence of gammaH2AX was examined with immunocytochemistry and flow cytometry. Induction of gammaH2AX foci formation was observed in all of the mammalian cell lines used here after heat-treatment as well as after X-irradiation. However, the intensity of gammaH2AX was different in the different cell lines used. These results confirm that heat can induce gammaH2AX foci formation in many mammalian cell lines.  相似文献   

14.
γH2AX焦点(foci)被普遍当做DNA双链断裂(DSB)损伤的分子标志物.为探 讨细胞周期进程相关的H2AX磷酸化规律特征,采用胸腺嘧啶双阻滞结合噻氨酯哒唑(nocodazole)的后续处理,将HeLa细胞同步于有丝分裂的前中期.然后,用流式细胞仪检测细胞周期、Western印迹和免疫荧光法,观察γH2AX表达和γH2AX焦点的形成.结果显示,细胞进入G2/M期和有丝分裂过程中,γH2AX水平显著增加 ;在无DNA DSB发生的情况下,部分M期细胞中也存在大量的γH2AX焦点.随着细 胞完成有丝分裂从M期退出再进入G1期,γH2AX的表达水平逐渐降低.这种 γH2AX表达变化特征与G2/M期密切关联的PLK1和Cyclin B1的表达规律相类似. 在4 Gy大剂量照射下,HeLa细胞于照后8 到12 h出现明显的G2/M期阻滞.γH2AX 焦点数在照后1 h达高峰,随后降低,照后8 h又上升,出现了第2个峰值.与之不同的是,在1 Gy低剂量照射下,细胞的G2/M期阻滞微弱,γH2AX焦点数在照后 0.5 h最高,随后下降,且无反弹,符合DNA DSB的修复动力学特征.因此,将γ H2AX当做DNA DSB分子标志物时,还需要考虑细胞周期变化的影响.γH2AX适合 作为1 Gy以下照射的DNA双链断裂损伤的分子标志.  相似文献   

15.
Zhou C  Li Z  Diao H  Yu Y  Zhu W  Dai Y  Chen FF  Yang J 《Mutation research》2006,604(1-2):8-18
It has been reported that the phosphorylated form of histone variant H2AX (gammaH2AX) plays an important role in the recruitment of DNA repair and checkpoint proteins to sites of DNA damage, particularly at double strand breaks (DSBs). Using gammaH2AX foci formation as an indicator for DNA damage, several chemicals/stress factors were chosen to assess their ability to induce gammaH2AX foci in a 24h time frame in a human amnion FL cell line. Two direct-acting genotoxins, methyl methanesulfonate (MMS) and N-ethyl-N-nitrosourea (ENU), can induce gammaH2AX foci formation in a time- and dose-dependent manner. Similarly, an indirect-acting genotoxin, benzo[a]pyrene (BP), also induced the formation of gammaH2AX foci in a time- and dose-dependent manner. Another indirect genotoxin, 2-acetyl-aminofluorene (AAF), did not induce gammaH2AX foci formation in FL cells; however, AAF can induce gammaH2AX foci formation in Chinese hamster CHL cells. Neutral comet assays also revealed the induction of DNA strand breaks by these agents. In contrast, epigenetic carcinogens azathioprine and cyclosporine A, as well as non-carcinogen dimethyl sulfoxide, did not induce gammaH2AX foci formation in FL cells. In addition, heat shock and hypertonic saline did not induce gammaH2AX foci. Cell survival analyses indicated that the induction of gammaH2AX is not correlated with the cytotoxic effects of these agents/factors. Taken together, these results suggest that gammaH2AX foci formation could be used for evaluating DNA damage; however, the different cell types used may play an important role in determining gammaH2AX foci formation induced by a specific agent.  相似文献   

16.
Dong Z  Hu H  Chen W  Li Z  Liu G  Yang J 《Mutation research》2007,629(1):40-48
The involvement of DNA damage in heat shock-induced cell death remains controversial. To investigate whether heat shock can induce DNA damage, we tested the induction of gammaH2AX foci formation, a sensitive indicator for DNA double strand breaks (DSBs), by heat shock treatment in several cell lines including HeLa, CHL, HepG2, and 293 cells, as well as human spermatozoa. Although heat shock treatment can decrease cell viability, no induction of gammaH2AX foci formation was observed in any of these cells. In addition, a p53-deficient cell line (U2OSE6tet24) and a flap endonuclease 1 (FEN1)-deficient cell line (FL-FEN1(-)) also did not show induction of gammaH2AX foci after heat shock treatment. Finally, it was found that 30min of pre-heat shock can inhibit gammaH2AX foci formation induced by an alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), which is known to induce gammaH2AX foci formation. On the other hand, heat shock after MNNG treatment did not affect the gammaH2AX foci formation induced by MNNG. Taken together, these data suggest that although heat shock might influence the gammaH2AX foci formation process, it does not induce DNA damage in the cells tested in this study.  相似文献   

17.
The main aim of this study was to compare the reaction of quiescent and proliferating, i.e. phytohemagglutinin (PHA)-stimulated, human peripheral blood mononuclear cells (PBMCs) to gamma-radiation, and analyse changes of proteins related to repair of DNA damage and apoptosis, such as gammaH2A.X, p53, p53 phosphorylation at serines-15 and -392, and p21 and their dose dependence. Freshly isolated PBMCs in peripheral blood are predominantly quiescent, in G(0) phase, and with very low amounts of proteins p53 and p21. Using confocal microscopy we detected dose dependent (0.5-5 Gy) induction of foci containing gammaH2A.X (1 h after gamma-ray exposure), which are formed around radiation-induced double strand breaks of DNA. Apoptosis was detected from 24 h after irradiation by the dose of 4 Gy onwards by Annexin V binding and lamin B cleavage. Seventy two hours after irradiation 70% of CD3(+) lymphocytes were A(+). Neither increase in p53 nor its phosphorylation on serine-392 after irradiation was detected in these cells. However, massive increase in p21 (cyclin-dependent kinase inhibitor 1A) was detected after irradiation, which can be responsible for late occurrence of apoptosis in these quiescent cells. PHA-stimulation itself (72 h) caused an increase in early apoptosis (A(+)PI(-)) in comparison to non-stimulated PBMCs (38% A(+) resp. 13.4%). After PHA-stimulation also the amount of gammaH2A.X, p53, and p21 increased, but no phosphorylation of p53 on serine-392 or -15 was detected. Reaction to gamma-radiation was different in PHA-stimulated lymphocytes: the p53 pathway was activated and p53 was phosphorylated on serines-15 and -392 4 h after irradiation by the dose of 4 Gy. Phosphorylation of p53 at serine-15 increased in a dose-dependent manner in the studied dose range 0.2-7.5 Gy. Also the amount of p21 increased after irradiation. Seventy two hours after irradiation of PHA-stimulated CD3(+) T lymphocytes by the dose of 4 Gy 65% of cells were A(+).  相似文献   

18.
Based on the role of phosphorylation of the histone H2A variant H2AX in recruitment of DNA repair and checkpoint proteins to the sites of DNA damage, we have investigated gammaH2AX as a reporter of tumor radiosensitivity and a potential target to enhance the effectiveness of radiation therapy. Clinically relevant ionizing radiation (IR) doses induced similar patterns of gammaH2AX focus formation or immunoreactivity in radiosensitive and radioresistant human tumor cell lines and xenografted tumors. However, radiosensitive tumor cells and xenografts retained gammaH2AX for a greater duration than radioresistant cells and tumors. These results suggest that persistence of gammaH2AX after IR may predict tumor response to radiotherapy. We synthesized peptide mimics of the H2AX carboxyl-terminal tail to test whether antagonizing H2AX function affects tumor cell survival following IR. The peptides did not alter the viability of unirradiated tumor cells, but both blocked induction of gammaH2AX foci by IR and enhanced cell death in irradiated radioresistant tumor cells. These results suggest that H2AX is a potential molecular target to enhance the effects of radiotherapy.  相似文献   

19.
An improved assessment of the biological effects and related risks of low doses of ionizing radiation is currently an important issue in radiation biology. Irradiations using microbeams are particularly well suited for precise and localized dose depositions, whereas recombinant cell lines with fluorescent proteins allow the live observation of radiation-induced foci. Living cells of the fibrosarcoma cell line HT-1080 stably expressing 53BP1 or full-length reconstituted MDC1 fused to Green Fluorescent Protein (GFP) were irradiated with protons and α-particles of linear energy transfers (LETs) of 15 and 75 keV/μm, respectively. Using a microbeam, the irradiations were carried out in line patterns, which facilitated the discrimination between undefined background and radiation-induced foci. As expected, foci formation and respective kinetics from α-particle irradiations with a high LET of 75 keV/μm could be detected in a reliable manner by both fusion proteins, as reported previously. Colocalization of γ-H2AX foci confirmed the DSB nature of the detected foci. As a novel result, the application of protons with low LET of 15 keV/μm generated 53BP1- and MDC1-mediated foci of almost equal size and slightly different kinetics. This new data expands the capability of 53BP1 and wild-type MDC1 on visible foci formation in living cells after irradiation with low-LET particles. Furthermore, the kinetics in HT-1080 cells for α-particle irradiation show a delay of about 20 s for 53BP1 foci detection compared to wild-type MDC1, confirming the hierarchical assembly of both proteins. Preliminary data for proton irradiations are shown and also these indicate a delay for 53BP1 versus MDC1.  相似文献   

20.
DNA double-strand breaks originating from diverse causes in eukaryotic cells are accompanied by the formation of phosphorylated H2AX (gammaH2AX) foci. Here we show that gammaH2AX formation is also a cellular response to topoisomerase I cleavage complexes known to induce DNA double-strand breaks during replication. In HCT116 human carcinoma cells exposed to the topoisomerase I inhibitor camptothecin, the resulting gammaH2AX formation can be prevented with the phosphatidylinositol 3-OH kinase-related kinase inhibitor wortmannin; however, in contrast to ionizing radiation, only camptothecin-induced gammaH2AX formation can be prevented with the DNA replication inhibitor aphidicolin and enhanced with the checkpoint abrogator 7-hydroxystaurosporine. This gammaH2AX formation is suppressed in ATR (ataxia telangiectasia and Rad3-related) deficient cells and markedly decreased in DNA-dependent protein kinase-deficient cells but is not abrogated in ataxia telangiectasia cells, indicating that ATR and DNA-dependent protein kinase are the kinases primarily involved in gammaH2AX formation at the sites of replication-mediated DNA double-strand breaks. Mre11- and Nbs1-deficient cells are still able to form gammaH2AX. However, H2AX-/- mouse embryonic fibroblasts exposed to camptothecin fail to form Mre11, Rad50, and Nbs1 foci and are hypersensitive to camptothecin. These results demonstrate a conserved gammaH2AX response for double-strand breaks induced by replication fork collision. gammaH2AX foci are required for recruiting repair and checkpoint protein complexes to the replication break sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号