首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brown ghosts, Apteronotus leptorhynchus, are weakly electric gymnotiform fish whose wave-like electric organ discharges are distinguished by their enormous degree of regularity. Despite this constancy, two major types of transient electric organ discharge modulations occur: gradual frequency rises, which are characterized by a relatively fast increase in electric organ discharge frequency and a slow return to baseline frequency; and chirps, brief and complex frequency and amplitude modulations. Although in spontaneously generated gradual frequency rises both duration and amount of the frequency increase are highly variable, no distinct subtypes appear to exist. This contrasts with spontaneously generated chirps which could be divided into four "natural" subtypes based on duration, amount of frequency increase and amplitude reduction, and time-course of the frequency change. Under non-evoked conditions, gradual frequency rises and chirps occur rather rarely. External stimulation with an electrical sine wave mimicking the electric field of a neighboring fish leads to a dramatic increase in the rate of chirping not only during the 30 s of stimulation, but also in the period immediately following the stimulation. The rate of occurrence of gradual frequency rises is, however, unaffected by such a stimulation regime.  相似文献   

2.
Although normal human keratinocytes are known to migrate toward the cathode in a direct current (DC) electric field, other effects of the electric stimulation on keratinocyte activities are still unclear. We have investigated the keratinocyte differentiation under monodirectional pulsed electric stimulation which reduces the electrothermal and electrochemical hazards of a DC application. When cultured keratinocytes were exposed to the electric field of 3 V (ca. 100 mV/mm) or 5 V (ca. 166 mV/mm) at a frequency of 4,800 Hz for 5 min a day for 5 days, cell growth under the 5-V stimulation was significantly suppressed as compared with the control culture. Expression of mRNAs encoding keratinocyte differentiation markers such as keratin 10, involucrin, transglutaminase 1, and filaggrin was significantly increased in response to the 5-V stimulation, while the 3-V stimulation induced no significant change. After the 5-V stimulation, enhanced immunofluorescent stainings of involucrin and filaggrin were observed. These results indicate that monodirectional pulsed electric stimulation induces the keratinocyte differentiation with growth arrest.  相似文献   

3.
E K Onuma  S W Hui 《Cell calcium》1985,6(3):281-292
C3H/10T1/2 mouse embryo fibroblasts stimulated by a steady electric field (10 V/cm) for 30 min exhibited lamellar retraction on the sides facing the electrodes. Some cells elongated and preferentially oriented with their long axis perpendicular to the field direction. Depletion of external calcium or blockage of calcium influx with lanthanum or the calcium channel blocker D-600 resulted in a reduction of the field-induced response. When external calcium was elevated stepwise from 0 to 10 mM, the field-induced response increased correspondingly. Electric stimulation in the presence of the calcium ionophore A23187 resulted in an increase of spindle-shaped cells with no preferential orientation. This response was blocked by calcium depletion and lanthanum, but not by D-600. The anticalmodulin drug W-13 inhibited the field-induced responses observed in normal buffer as well as in the presence of A23187. Some cell death resulted from prolonged electric field exposure, and the mortality was reduced by calcium depletion, lanthanum or D-600, but was not affected by W-13. We postulate that local calcium influx through channels opened by the electric field produces areas of high intracellular calcium which stimulate the cytoskeletal network to induce lamellar retraction. Prolonged field-induced calcium influx may eventually overcome the cell's mitochondrial calcium-buffer system, leading to necrotic calcification.  相似文献   

4.
Chronic exposure of animals to 60-Hz electric fields is known to affect the nervous system in a variety of subtle ways. The mechanism whereby these effects are produced remains unknown. One hypothesis is that the effects are a result of direct interaction between neuronal membranes and induced currents. Alternatively, the effects could be produced indirectly, as a result of sensory stimulation and the resulting low-level stress. To test these hypotheses, a system was developed to expose the surface of an anesthetized cat's paw to surface electric fields up to 600 kV/m while simultaneously measuring, in dorsal root fibers, afferent nerve impulses originating from various receptor types in the exposed paw. Of the 245 receptor units tested, comprising ten cutaneous receptor types, ten responded to the electric field with an increase in firing rate. The most sensitive receptor type was the rapidly adapting field receptor (RAF); eight of 20 (40%) were sensitive to the electric field, with thresholds as low as 160 kV/m. One of 35 rapidly adapting high-frequency receptors and one of 22 type T hair-follicle receptors were also sensitive to the electric field. Follow-up tests on the RAF receptors showed that hair removal reduced but did not eliminate the electric field sensitivity, suggesting that at least one other mechanism was involved in addition to stimulation via hair movement. The most likely mechanism is field-induced vibrations of the skin, since a further reduction in firing rate occurred following application of mineral oil to the depilated paw. Direct interaction with neuronal membranes is not supported by our evidence.  相似文献   

5.
In conditions of chronic experiment cats reactions were studied to species-specific acoustic signals (SAS) presented separately and against the background of the electric stimulation of the hypothalamus before and after partial bilateral ablation of the sensorimotor area of the cortex (SMC). It was shown that separately presented SAS caused in animals motor reactions, mainly orienting and negative. Ablation of SMC (field 4,6) caused an increase of positive reactions to sound, including also orienting reactions. A selective character of the reaction to SAS of agonistic type was revealed in animals with "true" aggression to combined (acoustic and subthreshold electric) stimulation. In animals with "false" aggression the combined stimulation caused only nonspecific elements of motor reactions and agonistic vocalizations. SMC ablation caused an increase of aggressive reactions to combined stimulation, revealed in the form of tendency for all animals. In this case in animals with "true" aggression after operation the probability increased of the appearance of motor reactions of aggressive type in comparison with agonistic vocalizations.  相似文献   

6.
Around the turn of the last century, there was intensive discussion among physiologists as to whether there was a law that described the phenomena of electrostimulation. In 1892 J.L. Hoorweg became the first to put electrostimulation on a quantitative footing. As early as 1901 G. Weiss formulated a law which made it possible to compare the effect of stimulation pulses of different shape. In 1909 L. Lapicque introduced the terms "rheobase" and "chronaxie", thus giving the "fundamental law of electrostimulation" its final form, which is still valid today. We are now able to give Lapicque's Law a physical interpretation. It is the electric field which is important for initiating electrostimulation by acting directly on the permeability of the membrane. The size of this field is produced by a transformation of the low extracellular field by the membrane. The consequences arising from the theory and our hypothesis are remarkable, and are illustrated for a number of practical problems. Thus, for example, a current of 50 Hz is dangerous if it creates an electric field strength within the heart of 34 V/m or more. For frequencies above 10 kHz the danger threshold increases by 20 dB/octave.  相似文献   

7.
Moxonidine and clonidine, which are imidazoline compounds, are sympathetic modulators used as centrally acting antihypertensive drugs. Moxonidine, clonidine, and agmatine produce extensive effects in mammalian tissues via imidazoline recognition sites (or receptors) or α(2)-adrenoceptors. To investigate the effects of imidazolines on the function of the urinary bladder, we tested the effects of moxonidine, clonidine, and agmatine on the neurogenic contraction induced by electric field stimulation, and on the post-synaptic receptors in isolated urinary bladder detrusor strips from rabbit. Both moxonidine at 1.0-10.0?μmol/L and clonidine at 0.1-10.0?μmol/L inhibited electric-field-stimulation-induced contraction in a concentration-dependent manner, but not agmatine (10.0-1000.0?μmol/L). Both moxonidine and clonidine failed to affect carbachol or adenosine-triphosphate-induced contractions; however, 1000.0?μmol/L agmatine significantly increased these contractions. Our study indicates that (i) moxonidine and clonidine produce a concentration-dependent inhibition of the neurogenic contractile responses to electric field stimulation in isolated detrusor strips from male New Zealand rabbits; (ii) post-synaptic muscarinic receptor and purinergic receptor stimulation are not involved in the responses of moxinidine and clonidine in this study; (iii) the inhibitory effects of these agents are probably not mediated by presynaptic imidazoline receptors.  相似文献   

8.
Electric fields, which are ubiquitous in the context of neurons, are induced either by external electromagnetic fields or by endogenous electric activities. Clinical evidences point out that magnetic stimulation can induce an electric field that modulates rhythmic activity of special brain tissue, which are associated with most brain functions, including normal and pathological physiological mechanisms. Recently, the studies about the relationship between clinical treatment for psychiatric disorders and magnetic stimulation have been investigated extensively. However, further development of these techniques is limited due to the lack of understanding of the underlying mechanisms supporting the interaction between the electric field induced by magnetic stimulus and brain tissue. In this paper, the effects of steady DC electric field induced by magnetic stimulation on the coherence of an interneuronal network are investigated. Different behaviors have been observed in the network with different topologies (i.e., random and small-world network, modular network). It is found that the coherence displays a peak or a plateau when the induced electric field varies between the parameter range we defined. The coherence of the neuronal systems depends extensively on the network structure and parameters. All these parameters play a key role in determining the range for the induced electric field to synchronize network activities. The presented results could have important implications for the scientific theoretical studies regarding the effects of magnetic stimulation on human brain.  相似文献   

9.
Neuromodulation applications of nanosecond electric pulses (nsEP) are hindered by their low potency to elicit action potentials in neurons. Excitation by a single nsEP requires a strong electric field which injures neurons by electroporation. We bypassed the high electric field requirement by replacing single nsEP stimuli with high-frequency brief nsEP bursts. In hippocampal neurons, excitation thresholds progressively decreased at nsEP frequencies above 20–200 kHz, with up to 20–30-fold reduction at sub-MHz and MHz rates. For a fixed burst duration, thresholds were determined by the duty cycle, irrespective of the specific nsEP duration, rate, or number of pulses per burst. For 100-μs bursts of 100-, 400-, or 800-ns pulses, the threshold decreased as a power function when the duty cycle exceeded 3–5 %. nsEP bursts were compared with single “long” pulses whose duration and amplitude matched the duration and the time-average amplitude of the burst. Such pulses deliver the same electric charge as bursts, within the same time interval. High-frequency nsEP bursts excited neurons at the time-average electric field 2–3 times below the threshold for a single long pulse. For example, the excitation threshold of 139 ± 14 V/cm for a single 100-μs pulse decreased to 57 ± 8 V/cm for a 100-μs burst of 100-ns, 0.25-MHz pulses (p < 0.001). Applying nsEP in bursts reduced or prevented the loss of excitability in multiple stimulation attempts. Stimulation by high-frequency nsEP bursts is a powerful novel approach to excite neurons at paradoxically low electric charge while also avoiding the electroporative membrane damage.  相似文献   

10.
Pulsed electric stimulation, coupled capacitively to bone cells isolated from rat embryo calvaria, caused changes in the intracellular level of cyclic AMP and enhanced DNA synthesis. The capacitive method of electrical stimulation was characterized in terms of displacement currents (0.7-4.0 A) and voltages (10-54 V/cm) prevailing in the stimulation chamber. Changes, both in cyclic AMP and in incorporation of [3H]thymidine into DNA, were correlated with the strength of the applied electric field. Unlike the mechanical stimulation of bone cells, the electrical stimulus was not mediated by de novo synthesis of prostaglandins. The findings suggest that cyclic-AMP changes, induced by the capacitive electrical stimulation of bone cells, trigger DNA synthesis.  相似文献   

11.
C3H/10T1/2 mouse embryo fibroblasts were stimulated by a steady electric field ranging up to 15 V/cm. The percentage of spindle-shaped cells increased with the field strength and duration of the stimulation. These cells oriented preferentially with their long axis perpendicular to the field direction. A small percentage of the cells were found to move slightly toward the cathode during the course of electric stimulation. Although no apparent field-induced redistribution of fluorescent-labelled concanavalin A (conA) receptor along the cell periphery was observed, the bright perinuclear area appeared preferentially on the anode side. Correlative fluorescence and scanning electron microscopy (SEM) revealed no difference in the density of conA-gold microsphere labels on either side of the cell. The density of intramembranous particles on the E-face of the plasma membrane was 54% higher on the anode side than on the cathode side of the cell. The microfilament bundles were observed to be disrupted after 30 min of 10 V/cm stimulation by rhodamine phalloidin labelling of F-actin. The cell sensitivity to electric field-induced reorientation and cell shape changes was reduced by pretreatment with conA, and to a lesser extent, with succinyl conA or wheat germ agglutinin (WGA). ConA pretreatment alone also reduced the prominence of microfilament bundles. However, post-field lectin binding to the cell has no effect on cell recovery. It is possible that the generally flat 10T1/2 cells retract and realign in order to minimize the disruption of their membrane potential. The conA binding-mediated receptor-cytoskeletal linkage temporarily immobilizes the cell and inhibits subsequent field-induced shape changes.  相似文献   

12.
Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25–2000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 μT magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in U.S. residences. Bioelectromagnetics 18:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Chronic experiments were conducted on 46 rabbits; a study was made of the changes in cardiac activity arising in prolonged (up to 1--2 weeks) electric stimulation of the ventro-median nuclei of the hypothalamus. Disturbances of the cardiac rhythm in the form of tachycardia, atrial flutter and fibrillation, ventricular extrasystole and paroxysmal ventricular tachysystole occurred mostly during the first days of stimulation and ceased after inderal infusion. Functional "weakness" of the cardiac pacemakers was revealed in the animals subjected to 1--2-week stimulation of the ventromedian nuclei. This was indicated by the post-stimulation suppression of the pacemaker automaticity and the appearance of Liciani's periods. Disturbances of the cardiac rhythm originating in stimulation of the ventromedian nuclei ceased in stimulation of the lateral hypothalamic field.  相似文献   

14.
Transcranial magnetic stimulation (TMS) is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS) is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS) with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.  相似文献   

15.
Du J  Feng L  Yang F  Lu B 《The Journal of cell biology》2000,150(6):1423-1434
Brain-derived neurotrophic factor (BDNF) has been shown to regulate neuronal survival and synaptic plasticity in the central nervous system (CNS) in an activity-dependent manner, but the underlying mechanisms remain unclear. Here we report that the number of BDNF receptor TrkB on the surface of hippocampal neurons can be enhanced by high frequency neuronal activity and synaptic transmission, and this effect is mediated by Ca(2+) influx. Using membrane protein biotinylation as well as receptor binding assays, we show that field electric stimulation increased the number of TrkB on the surface of cultured hippocampal neurons. Immunofluorescence staining suggests that the electric stimulation facilitated the movement of TrkB from intracellular pool to the cell surface, particularly on neuronal processes. The number of surface TrkB was regulated only by high frequency tetanic stimulation, but not by low frequency stimulation. The activity dependent modulation appears to require Ca(2+) influx, since treatment of the neurons with blockers of voltage-gated Ca(2+) channels or NMDA receptors, or removal of extracellular Ca(2+), severely attenuated the effect of electric stimulation. Moreover, inhibition of Ca(2+)/calmodulin-dependent kinase II (CaMKII) significantly reduced the effectiveness of the tetanic stimulation. These findings may help us to understand the role of neuronal activity in neurotrophin function and the mechanism for receptor tyrosine kinase signaling.  相似文献   

16.
The effects of 50 Hz sinusoidal electric currents and magnetic fields on the Gram-positive skin bacterium Propionibacterium acnes were investigated. Intracellular free calcium ([Ca(2+)](i)), intracellular pH (pH(i)), and cell viability were examined, based on their relevance to ELF field studies and on previous studies conducted on P. acnes (UVA irradiation, photosensitization using porphyrin-based sensitizers, and broad-band red light). The [Ca(2+)](i) and the pH(i) were measured spectrofluorimetrically using the fluorescent probes fura-2 and BCECF, respectively. Sham-exposed controls were used to assess the field exposed samples. Cell suspensions were exposed to 50 Hz, 0.2 mT sinusoidal magnetic fields generated by using Helmholtz coils for up to 30 min. The estimated maximum induced electric field was 0.2 mV/m. Changes in [Ca(2+)](i) and cell viability were not detected. Ag/AgCl electrodes were used to expose cell suspensions to 50 Hz sinusoidal electric currents. The current densities were in the range 0.015-1500 A/m(2) (corresponding electric fields congruent with0.01-1000 V/m). Changes in [Ca(2+)](i) were not observed after current exposure. Current densities of 800 A/m(2) (electric field E congruent with550 V/m) were required for a 50% reduction in cell viability. Current densities greater than 800 A/m(2) were required for a reduction in pH(i). However, a pH gradient across the cell membrane (inside alkaline) was maintained even when exposure resulted in less than 0. 2% survival (1400 A/m(2), E congruent with950 V/m). Thus, dissipation of the pH gradient across the cell membrane and changes in [Ca(2+)](i) were not a consequence of cell inactivation by 50 Hz electric currents. This is in contrast to inactivation of P. acnes by UVA irradiation or photosensitization, where such changes have been obtained.  相似文献   

17.
Mouse astrocytes (glial cells) in primary cultures were exposed to a low-voltage static DC electric field with no current flow and thus with no generation of magnetic fields. The electric field altered the rate of glycolysis, measured by 2-deoxyglucose accumulation. The magnitude and direction of this effect depended on the polarization of the field and the applied voltage. The maximum effect was an increase of ∼30%, which occurred with field across the cells at an intensity that can be calculated to be 0.3 mV/cm or less. Reversal of the polarization converted the stimulation to a small but statistically significant inhibition. Bioelectromagnetics 18:77–80, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
When large defects occur, bone regeneration can be supported by bone grafting and biophysical stimuli like electric and magnetic stimulation (EMS). Clinically established EMS modes are external coils and surgical implants like an electroinductive screw system, which combines a magnetic and electric field, e.g., for the treatment of avascular bone necrosis or pseudarthrosis. For optimization of this implant system, an in vitro test setup was designed to investigate effects of EMS on human osteoblasts on different 3D scaffolds (based on calcium phosphate and collagen). Prior to the cell experiments, numerical simulations of the setup, as well as experimental validation, via measurements of the electric parameters induced by EMS were conducted. Human osteoblasts (3 × 105 cells) were seeded onto the scaffolds and cultivated. After 24 h, screw implants (Stryker ASNIS III s-series) were centered in the scaffolds, and EMS was applied (3 × 45 min per day at 20 Hz) for 3 days. Cell viability and collagen type 1 (Col1) synthesis were determined subsequently. Numerical simulation and validation showed an adequate distribution of the electric field within the scaffolds. Experimental measurements of the electric potential revealed only minimal deviation from the simulation. Cell response to stimulation varied with scaffold material and mode of stimulation. EMS-stimulated cells exhibited a significant decrease of metabolic activity in particular on collagen scaffolds. In contrast, the Col1/metabolic activity ratio was significantly increased on collagen and non-sintered calcium phosphate scaffolds after 3 days. Exclusive magnetic stimulation showed similar but nonsignificant tendencies in metabolic activity and Col1 synthesis. The cell tests demonstrate that the new test setup is a valuable tool for in vitro testing and parameter optimization of the clinically used electroinductive screw system. It combines magnetic and electric stimulation, allowing in vitro investigations of its influence on human osteoblasts.  相似文献   

19.
20.
The effects of therapeutic SCS and transcranial electric stimulation on the functional activity of the brain in seven patients in the posttraumatic unconscious state were compared. The therapeutic transcranial stimulation was shown to exert a positive effect on the EEG and the characteristics of its spatial–temporal organization in most cases, which corresponds with positive shifts in the mental and motor sphere. The phasic character of changes in the bioelectric activity reflecting the sequence of involvement of the cerebral structures (primary activation of the deep frontal lobe divisions, activation of the subcortical-diencephalic structures, activation of the cortex) in the developing adaptive reactions, which helps understand their neurophysiological mechanisms, was described. It was established that the formation of the foci of persistent pathological activity with dominant characteristics in the brain is one of the possible complications of both SCS and transcranial electric stimulation. The mechanisms of their neurogenesis and the electrographic equivalents require further study. The data may serve as the basis for further clinical study of the influence of transcranial electric stimulation on the recovery of patients in postcomatose unconscious states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号