首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The detection of low affinity interactions between proteins and ligands by biophysical methods is challenging. It is often necessary to use competition methods that are time consuming and require well characterized known binders. A mass spectrometry approach is presented for identifying low affinity protein-ligand binding which does not require direct detection of the parent protein-ligand complex but depends on characteristic changes observed in the protein mass spectrum. We observe that on titration of ligand there are characteristic ‘charge-state shifts’ which manifest as changes in the relative intensities of protein peaks that correlate with the degree of protein-ligand complex formation. We suggest that use of this phenomenon will be particularly suitable for the identification of low affinity complexes where the intensity of any complex ion would be close to noise.  相似文献   

2.
We have adopted nanoflow electrospray ionization mass spectrometry (ESI-MS) and isothermal titration calorimetry (ITC) to probe the mechanism of peptide recognition by the SH2 domain from the Src family tyrosine kinase protein, Fyn. This domain is involved in the mediation of intracellular signal transduction pathways by interaction with proteins containing phosphorylated tyrosine (Y*) residues. The binding of tyrosyl phosphopeptides can mimic these interactions. Specificity in these interactions has been attributed to the interaction of the Y* and residues proximal and C-terminal to it. Previous studies have established that for specific binding with Fyn, the recognition sequence consists of pTyr-Glu-Glu-Ile. The specific interactions involve the binding of Y* with the ionic, and the Y* + 3 Ile residue with the hydrophobic binding pockets on the surface of the Fyn SH2 domain. In this work, a variation in the Y* + 3 residue of this high-affinity sequence was observed to result in changes in the relative binding affinities as determined in solution (ITC) and in the gas phase (nanoflow ESI-MS). X-ray analysis shows that a feature of the Src family SH2 domains is the involvement of water molecules in the peptide binding site. Under the nanoflow ESI conditions, water molecules appear to be maintained in the Fyn SH2-ligand complex. Compelling evidence for these molecules being incorporated in the SH2-peptide interface is provided by the prevalence of the peaks assigned to water-bound over the water-free complex at high-energy conditions. Thus, the stability of water protein-ligand complex appears to be intimately linked to the presence of water.  相似文献   

3.
A 26 kDa endochitinase from barley seeds was enzymatically characterized exclusively by electrospray ionization mass spectrometry (ESI-MS). At first, oligosaccharide hydrolysis catalyzed by the barley chitinase was monitored in real-time by ESI-MS. The reaction time-course obtained by ESI-MS monitoring was found to be consistent with the data obtained earlier by HPLC, and the quantitative profile was successfully simulated by kinetic modeling of the enzymatic hydrolysis. It is obvious that the real-time monitoring method by ESI-MS allows a faster and cheaper determination of the chitinase activity with unlabeled substrate. Further, the enzymatic activity of the E67Q mutant of the barley chitinase was analyzed and the role of Glu67 was discussed comparing the mass spectra of enzyme protein obtained in native and in denatured conditions. Then it was determined that the observed loss of the enzymatic activity in E67Q is definitely caused by a point mutation of Glu67 but not due to partial unfolding of the mutated enzyme. Finally, association constants of enzyme–oligosaccharide complexes were calculated from Scatchard plots obtained by mass spectra. The binding free energy values obtained for E67Q were found to be comparable to those previously obtained in liquid phase, but less dependent upon the chain length of the oligosaccharides. To our knowledge, this study is the first enzymatic characterization of chitinase exclusively by such an innovative ESI-MS system.  相似文献   

4.
AIMS: To rapidly type the fengycin homologues produced by Bacillus subtilis strains with electrospray ionization/collision-induced dissociation (ESI/CID) mass spectrometry. METHODS AND RESULTS: Fengycin homologues produced by Bacillus subtilis JA were analysed. When each homologue was subjected to ESI/CID analysis, ions representing characteristic fragmentations were detected. These ions can help to identify the homologues; even homologues of the same nominal mass can be discriminated by their ESI/CID spectra. Based on the CID results, fengycin homologues can be correctly assigned. CONCLUSIONS AND SIGNIFICANCE OF THIS STUDY: ESI/CID leads to rapid detection and structural characterization of fengycin homologues or lipopeptides with similar properties. It will be very useful in studying the regulatory expression of these peptides.  相似文献   

5.
Mass spectrometry (MS) with electrospray ionization (ESI) has shown utility for studying noncovalent protein complexes, as it offers advantages in sensitivity, speed, and mass accuracy. The stoichiometry of the binding partners can be easily deduced from the molecular weight measurement. In many examples of protein complexes, the gas phase-based measurement is consistent with the expected solution phase binding characteristics. This quality suggests the utility of ESI-MS for investigating solution phase molecular interactions. Complexes composed of proteins from the human immunodeficiency virus (HIV) have been studied using ESI-MS. Multiply charged protein dimers from HIV integrase catalytic core (F185K) and HIV protease have been observed. Furthermore, the ternary complex between HIV protease dimer and inhibitor pepstatin A was studied as a function of solution pH. Zinc binding to zinc finger-containing nucleocapsid protein (NCp7) and the NCp7-psi RNA 1:1 stoichiometry complex was also studied by ESI-MS. No protein-RNA complex was observed in the absence of zinc, consistent with the role of the zinc finger motifs for RNA binding. Proteins Suppl. 2:28–37, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Large-scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI-MS) is a highly sensitive label-free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI-MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI-MS detection of biomolecules in high-salt solutions. The dynamic mass spectrometry probe (DMSP) uses a microfluidic mass exchanger to rapidly condition samples for online MS analysis by removing interfering salts, while concurrently introducing MS signal enhancers to the sample for sensitive biomolecular detection. Exploiting this active conditioning capability increases MS signal intensity and signal-to-noise ratio. As a result, sensitivity for low-concentration biomolecules is significantly improved, and multiple proteins can be detected from chemically complex samples. Thus, the DMSP has significant potential to serve as an enabling portion of a novel analytical tool for discovery and monitoring of CQAs relevant to therapeutic cell manufacturing.  相似文献   

7.
Electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS) has been used to study noncovalent interactions between the trp apo-repressor (TrpR), its co-repressor tryptophan and its specific operator DNA. In 5 mM ammonium acetate, TrpR was detected as a partially unfolded monomer. In the presence of a 21-base-pair DNA possessing the two symmetrically arranged CTAG consensus sequences required for specific TrpR binding, a homodimer-dsDNA complex with a 1:1 stoichiometry was observed. Co-repressor was not needed for the complex to form under our experimental conditions. Collision induced dissociation (CID-MS) revealed that this complex was very stable in the gas phase since dissociation was achieved only at energies that also broke covalent bonds. We saw no evidence for the presence of the six water molecules that mediate the interaction between the protein and the DNA in the crystal structure. To check the binding specificity of the TrpR for its target DNA, a competitive experiment was undertaken: the protein was mixed with an equimolar amount of three different DNAs in which the two CTAG sequences were separated by 2, 4, and 6 bp, respectively. Only the DNA with the correct consensus spacing of 4 bp was able to form stable interactions with TrpR. This experiment demonstrates the potential of ESI-MS to test the sequence-specificity of protein-DNA complexes. The interactions between the TrpR-DNA complex and 5-methyl-, L- and D-tryptophan were also investigated. Two molecules of 5-methyl- or L-tryptophan were bound with high affinity to the TrpR-DNA complex. On the other hand, D-tryptophan appeared to bind to the complex with poor specificity and poor affinity.  相似文献   

8.
Nanoscale liquid chromatography coupled to electrospray ionization mass spectrometry was used to identify the nature of the ligand that binds noncovalently to siderocalin (lipocalin 2). The folded state siderocalin-ligand complex was separated from free, unfolded siderocalin using reversed phase chromatography, and the molecular weight of the siderocalin ligand was then determined from the deconvoluted molecular weights of the complex and of the free protein. The ligand was identified as dihydroxybenzoyl-serine, a breakdown product of enterobactin, an iron-chelating compound ("siderophore") synthesized in bacteria. These results demonstrate that, in some cases, electrostatic noncovalent protein complexes can survive the denaturing conditions of reversed phase liquid chromatography and the gas phase transfer occurring during electrospray ionization.  相似文献   

9.
10.
11.
A rapid, simple, and reliable method has been developed for the characterization and quantitation of ceramide molecular species directly from chloroform extracts of biological samples by electrospray ionization tandem mass spectrometry (ESI/MS/MS). By exploiting the differential fragmentation patterns of deprotonated ceramide ions, individual 2-hydroxy and nonhydroxy ceramide molecular species were readily identified by ESI/MS/MS with the neutral loss of fragments of mass 256.2 and 327.3 which correspond to sphingosine derivatives. The ions generated from the neutral loss of 256.2 (i.e., [M - H - 256.2](-)) are unique for ceramides with N-acyl sphingosine with the 18-carbon homolog. However, the sensitivity for nonhydroxy ceramides in ESI/MS/MS with the neutral loss of 256.2 is approximately threefold higher than that for 2-hydroxy ceramides. The ions resulting from the neutral loss of 327.3 (i.e., [M - H - 327.3](-)) are specific for 2-hydroxy ceramides. Additionally, all ceramides including both 2-hydroxy and nonhydroxy forms can be confirmed and accurately quantitated by ESI/MS/MS with the neutral loss of 240.2 after correction for (13)C isotope factors. This methodology demonstrated a 1000-fold linear dynamic range and a detection limit at the subfemtomole range and was applied to directly quantitate ceramide molecular species in chloroform extracts of biological samples including brain tissues and cell cultures.  相似文献   

12.
Tus protein binds tightly to specific DNA sequences (Ter) on the Escherichia coli chromosome halting replication. We report here conditions for detecting the 1 : 1 Tus-Ter complex by electrospray ionization mass spectrometry (ESI-MS). ESI mass spectra of a mixture of Tus and nonspecific DNA showed ions predominantly from uncomplexed Tus protein, indicating that the Tus-Ter complex observed in the gas phase was the result of a specific interaction rather than nonspecific associations in the ionization source. The Tus-Ter complex was very stable using a spray solvent of 10 mM ammonium acetate at pH 8.0, and initial attempts to distinguish binding affinities of Tus and mutant Tus proteins for Ter DNA were unsuccessful. Increasing the ammonium acetate concentration in the electrospray solvent (800 mM at pH 8.0) increased the dissociation constants sufficiently such that relative orders of binding affinity for Tus and various mutant Tus proteins for various DNA sequences could be determined. These were in agreement with the dissociation constants determined in solution studies. A dissociation constant of 700 x 10(-9) M for the binding of the mutant Tus protein A173T (where residue 173 is changed from alanine to threonine) to Ter DNA was estimated, compared with a value of 相似文献   

13.
Papaver alkaloids play a major role in medicine and pharmacy. In this study, [ring-(13)C(6)]-tyramine as a biogenetic precursor of these alkaloids was fed to Papaver somniferum seedlings. The alkaloid pattern was elucidated both by direct infusion high-resolution ESI-FT-ICR mass spectrometry and liquid chromatography/electrospray tandem mass spectrometry. Thus, based on this procedure, the structure of about 20 alkaloids displaying an incorporation of the labeled tyramine could be elucidated. These alkaloids belong to different classes, e.g. morphinan, benzylisoquinoline, protoberberine, benzo[c]phenanthridine, phthalide isoquinoline and protopine. The valuable information gained from the alkaloid profile demonstrates that the combination of these two spectrometric methods represents a powerful tool for evaluating biochemical pathways and facilitates the study of the flux of distant precursors into these natural products.  相似文献   

14.
Deuterium exchange was monitored by electrospray ionization mass spectrometry (ESI-MS) to study the slowly exchanging (hydrogen bonded) peptide hydrogens of several alpha-helical peptides and beta-sheet proteins. Polypeptides were synthetically engineered to have mainly disordered, alpha-helical, or beta-sheet structure. For 3 isomeric 31-residue alpha-helical peptides, the number of slowly exchanging hydrogens as measured by ESI-MS in 50% CF3CD2OD (pD 9.5) provided estimates of their alpha-helicities (26%, 40%, 94%) that agreed well with the values (17%, 34%, 98%) measured by circular dichroic spectroscopy in the same nondeuterated solvent. For 3 betabellins containing a pair of beta-sheets and a related disordered peptide, their order of structural stability (12D > 12S > 14D > 14S) shown by their deuterium exchange rates in 10% CD3OD/0.5% CD3CO2D (pD 3.8) as measured by ESI-MS was the same as their order of structural stability to unfolding with increasing temperature or guanidinium chloride concentration as measured by circular dichroic spectroscopy in water. Compared to monitoring deuterium exchange by proton NMR spectrometry, monitoring deuterium exchange by ESI-MS requires much less sample (1-50 micrograms), much shorter analysis time (10-90 min), and no chemical quenching of the exchange reaction.  相似文献   

15.
A selective reversed phase liquid chromatography/mass spectrometry (LC/MSn) method is described for the identification of related compounds in commercial polymyxin B samples. Mass spectral data for these polypeptide antibiotics were acquired on a LCQ ion trap mass spectrometer equipped with an electrospray ionization probe operated in the positive ion mode. The LCQ ion trap is ideally suited for the identification of the related substances because it provides on-line LC/MSn capability. The main advantage of this hyphenated LC/MSn technique is the characterization of novel related substances without time-consuming isolation and purifications procedures. Using this method six novel related substances were partially identified in a polymyxin B bulk sample.  相似文献   

16.
The dimerization constants for glycopeptide antibiotics vancomycin, ristocetin, and eremomycin and nine semisynthetic eremomycin derivatives were determined by the electrospray ionization mass spectrometry; the constants for natural antibiotics turned out to be close to those previously determined by NMR. No correlation between these dimerization constants and antibacterial activities of all the compounds toward the clinical strains of Gram-positive bacteria was found.  相似文献   

17.
The interactions between the N-terminal domain of the epsilon (epsilon186) and theta subunits of DNA polymerase III of Escherichia coli were investigated using electrospray ionization mass spectrometry. The epsilon186-theta complex was stable in 9 M ammonium actetate (pH 8), suggesting that hydrophobic interactions have a predominant contribution to the stability of the complex. Addition of primary alkanols to epsilon186-theta in 0.1 M ammonium acetate (pH 8), led to dissociation of the complex, as observed in the mass spectrometer. The concentrations of methanol, ethanol, and 1-propanol required to dissociate 50% of the complex were 8.9 M, 4.8 M, and 1.7 M, respectively. Closer scrutiny of the effect of alkanols on epsilon186, theta, and epsilon186-theta showed that epsilon186 formed soluble aggregates prior to precipitation, and that the association of epsilon186 with theta stabilized epsilon186. In-source collision-induced dissociation experiments and other results suggested that the epsilon186-theta complex dissociated in the mass spectrometer, and that the stability (with respect to dissociation) of the complex in vacuo was dependent on the solution from which it was sampled.  相似文献   

18.
枯草芽孢杆菌JA产生的抗生素对植物病原真菌具有广谱抗性,明确抗生素的种类是进一步研究的基础.用6mol/L盐酸沉淀JA菌株的去菌体培养基,再用甲醇抽提获得抗生素的粗提物.利用反相HPLC系统,将粗提物过Diamonsil C18柱,收集有抗小麦赤霉病等病原真菌活性的化合物1、2.运用电喷雾质谱法(ESI/MS)测得其分子量分别为1042.4D和1056.5D.再利用碰撞诱导解离(CID)技术获得化合物的典型结构特征离子碎片,结果表明分子量为1042.4D的化合物一级结构为Pro-Asn-Tyr-βAA-Asn-Tyr-Asn-Gln(βAA为14个碳原子的氨基脂肪酸),属于脂iturin A.化合物1、2为相差一个亚甲基(-CH2)的iturin A同系物.研究结果提供了一种从枯草芽孢杆菌发酵液中快速分离纯化和鉴定脂肽类抗生素iturin A的新方法.  相似文献   

19.
Two important glycosaminoglycans (GAGs) with structural roles in the body's cartilage are hyaluronan (HA) and chondroitin sulfate (CS). A simple mass spectrometric method for determining the amount of HA that may be present in isolated CS samples is presented in this article. Samples are subjected to selective enzymatic digestion using a bacterial hyaluronidase (HA lyase, EC 4.2.2, from Streptococcus dysgalactiae) specific for HA. Undigested CS GAG is then removed by centrifugal filtration, and digested HA left in the filtrate is quantified by electrospray ionization mass spectrometry using an internal standard and selected ion monitoring. The described method was applied to the analysis of several CS samples prepared for use in nutritional supplements.  相似文献   

20.
The binding stoichiometry and affinities of the Shiga toxins, Stx1 and Stx2, for a series of uni- and oligovalent analogs of the Pk-trisaccharide were measured using the direct electrospray ionization mass spectrometry (ES-MS) assay. Importantly, it is shown that, for a given ligand, Stx1 and Stx2 exhibit similar affinities. The binding data suggest a high degree of similarity in the spatial arrangement and structural characteristics of the Pk binding sites in Stx1 and Stx2. The results confirm that both toxins recognize the alpha-D-Galp(1-->4)-beta-D-Galp(1-->4)-beta-D-Glcp carbohydrate motif of the cell surface glycolipid Gb3. This, taken together with the results of the chemical mapping study, suggests that the nature of the Pk binding interactions with Stx1 and Stx2 are similar. The affinities of Stx1-B(5) and Stx2 for the multivalent ligands reveals that site 2 of Stx2, which shares the same spatial arrangement as site 2 in Stx1, is the primary Pk binding site and that site 1 of Stx1 and of Stx2 can also participate in Pk binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号