首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We hypothesized that a part of therapeutic effects of endurance training on insulin resistance is mediated by increase in cardiac and skeletal muscle mitochondrial lactate transporter, monocarboxylate transporter 1 (MCT1). Therefore, we examined the effect of 7 weeks endurance training on the mRNA and protein expression of MCT1 and MCT4 and their chaperon, CD147, on both sarcolemmal and mitochondrial membrane, separately, in healthy and type 2 diabetic rats. Diabetes was induced by injection of low dose of streptozotocin and feeding with high-fat diet. Insulin resistance was confirmed by homeostasis model assessment-estimated insulin resistance index and accuracy of two membranes separation was confirmed by negative control markers (glucose transporter 1 and cytochrome c oxidase. Real-time PCR and western blotting were used for mRNA and protein expression, respectively. Diabetes dramatically reduced MCT1 and MCT4 mRNA and their expression on sarcolemmal membrane whereas the reduction in MCT1 expression was less in mitochondrial membrane. Training increased the MCT1 mRNA and protein expression in both membranes and decreased insulin resistance as an adaptive consequence. In both tissues increase in CD147 mRNA was only parallel to MCT1 expression. The response of MCT1 on sarcolemmal and mitochondrial membranes was different between cardiac and skeletal muscles which indicate that intracellular lactate kinetic is tissue specific that allows a tissue to coordinate whole organism metabolism.  相似文献   

3.
This study investigated the effects of high-intensity training, with or without induced metabolic alkalosis, on lactate transporter (MCT1 and MCT4) and sodium bicarbonate cotransporter (NBC) content in rat skeletal muscles. Male Wistar rats performed high-intensity training on a treadmill 5 times/wk for 5 wk, receiving either sodium bicarbonate (ALK-T) or a placebo (PLA-T) prior to each training session, and were compared with a group of control rats (CON). MCT1, MCT4, and NBC content was measured by Western blotting in soleus and extensor digitorum longus (EDL) skeletal muscles. Citrate synthase (CS) and phosphofructokinase (PFK) activities and muscle buffer capacity (betam) were also evaluated. Following training, CS and PFK activities were significantly higher in the soleus only (P < 0.05), whereas betam was significantly higher in both soleus and EDL (P < 0.05). MCT1 (PLA-T: 30%; ALK-T: 23%) and NBC contents (PLA-T: 85%; ALK-T: 60%) increased significantly only in the soleus following training (P < 0.01). MCT4 content in the soleus was significantly greater in ALK-T (115%) but not PLA-T compared with CON. There was no significant change in protein content in the EDL. Finally, NBC content was related only to MCT1 content in soleus (r = 0.50, P < 0.01). In conclusion, these results suggest that MCT1, MCT4, and NBC undergo fiber-specific adaptive changes in response to high-intensity training and that induced alkalosis has a positive effect on training-induced changes in MCT4 content. The correlation between MCT1 and NBC expression suggests that lactate transport may be facilitated by NBC in oxidative skeletal muscle, which may in turn favor better muscle pH regulation.  相似文献   

4.
Two lactate/proton cotransporter isoforms (monocarboxylate transporters, MCT1 and MCT4) are present in the plasma (sarcolemmal) membranes of skeletal muscle. Both isoforms are symports and are involved in both muscle pH and lactate regulation. Accordingly, sarcolemmal MCT isoform expression may play an important role in exercise performance. Acute exercise alters human MCT content, within the first 24 h from the onset of exercise. The regulation of MCT protein expression is complex after acute exercise, since there is not a simple concordance between changes in mRNA abundance and protein levels. In general, exercise produces greater increases in MCT1 than in MCT4 content. Chronic exercise also affects MCT1 and MCT4 content, regardless of the initial fitness of subjects. On the basis of cross-sectional studies, intensity would appear to be the most important factor regulating exercise-induced changes in MCT content. Regulation of skeletal muscle MCT1 and MCT4 content by a variety of stimuli inducing an elevation of lactate level (exercise, hypoxia, nutrition, metabolic perturbations) has been demonstrated. Dissociation between the regulation of MCT content and lactate transport activity has been reported in a number of studies, and changes in MCT content are more common in response to contractile activity, whereas changes in lactate transport capacity typically occur in response to changes in metabolic pathways. Muscle MCT expression is involved in, but is not the sole determinant of, muscle H(+) and lactate anion exchange during physical activity.  相似文献   

5.
To evaluate the effects of endurance training on the expression of monocarboxylate transporters (MCT) in human vastus lateralis muscle, we compared the amounts of MCT1 and MCT4 in total muscle preparations (MU) and sarcolemma-enriched (SL) and mitochondria-enriched (MI) fractions before and after training. To determine if changes in muscle lactate release and oxidation were associated with training-induced changes in MCT expression, we correlated band densities in Western blots to lactate kinetics determined in vivo. Nine weeks of leg cycle endurance training [75% peak oxygen consumption (VO(2 peak))] increased muscle citrate synthase activity (+75%, P < 0.05) and percentage of type I myosin heavy chain (+50%, P < 0.05); percentage of MU lactate dehydrogenase-5 (M4) isozyme decreased (-12%, P < 0.05). MCT1 was detected in SL and MI fractions, and MCT4 was localized to the SL. Muscle MCT1 contents were consistent among subjects both before and after training; in contrast, MCT4 contents showed large interindividual variations. MCT1 amounts significantly increased in MU, SL, and MI after training (+90%, +60%, and +78%, respectively), whereas SL but not MU MCT4 content increased after training (+47%, P < 0.05). Mitochondrial MCT1 content was negatively correlated to net leg lactate release at rest (r = -0.85, P < 0.02). Sarcolemmal MCT1 and MCT4 contents correlated positively to net leg lactate release at 5 min of exercise at 65% VO(2 peak) (r = 0.76, P < 0.03 and r = 0. 86, P < 0.01, respectively). Results support the conclusions that 1) endurance training increases expression of MCT1 in muscle because of insertion of MCT1 into both sarcolemmal and mitochondrial membranes, 2) training has variable effects on sarcolemmal MCT4, and 3) both MCT1 and MCT4 participate in the cell-cell lactate shuttle, whereas MCT1 facilitates operation of the intracellular lactate shuttle.  相似文献   

6.
An exaggerated exercise pressor reflex (EPR) contributes to exercise intolerance and excessive sympathoexcitation in the chronic heart failure (CHF) state, which is prevented by exercise training (ExT) at an early stage in the development of CHF. We hypothesized that ExT has a beneficial effect on the exaggerated EPR by improving the dysfunction of muscle afferents in CHF. We recorded the discharge of mechanically sensitive (group III) and metabolically sensitive (group IV) afferents in response to static contraction, passive stretch, and hindlimb intra-arterial injection of capsaicin in sham+sedentary (Sed), sham+ExT, CHF+Sed, and CHF+ExT rats. Compared with sham+Sed rats, CHF+Sed rats exhibited greater responses of group III afferents to contraction and stretch, whereas the responses of group IV afferents to contraction and capsaicin were blunted. ExT prevented the sensitization of group III responses to contraction or stretch and partially prevented the blunted group IV responses to contraction or capsaicin in CHF rats. Furthermore, we investigated whether purinergic 2X (P2X) and transient receptor potential vanilloid 1 (TRPV1) receptors mediate the altered sensitivity of muscle afferents by ExT in CHF. We found that the upregulated P2X and downregulated TRPV1 receptors in L4/5 dorsal root ganglia of CHF rats were normalized by ExT. Hindlimb intra-arterial infusion of a P2X antagonist attenuated the group III response to contraction or stretch in CHF rats to a greater extent than in sham rats, which was normalized by ExT. These findings suggest that ExT improves the abnormal sensitization of muscle afferents in CHF at least, in part, via restoring the dysfunction of P2X and TRPV1 receptors.  相似文献   

7.
Osborn, Brett A., June T. Daar, Richard A. Laddaga, Fred D. Romano, and Dennis J. Paulson. Exercise training increases sarcolemmal GLUT-4 protein and mRNA content in diabetic heart. J. Appl. Physiol. 82(3): 828-834, 1997.This study determined whether dynamic exercise training ofdiabetic rats would increase the expression of the GLUT-4 glucosetransport protein in prepared cardiac sarcolemmal membranes. Fourgroups were compared: sedentary control, sedentary diabetic, trainedcontrol, and trained diabetic. Diabetes was induced by intravenousstreptozotocin (60 mg/kg). Trained control and diabetic rats were runon a treadmill for 60 min, 27 m/min, 10% grade, 6 days/wk for 10 wk.Sarcolemmal membranes were isolated by using differentialcentrifugation, and the activity of sarcolemmalK+-p-nitrophenylphosphatase( pNPPase; an indicator ofNa+-K+-adenosinetriphosphataseactivity) was quantified. Hearts from the sedentary diabetic groupexhibited a significant depression of sarcolemmal pNPPaseactivity. Exercise training did not significantly alterpNPPase activity. Sedentary diabetic rats exhibited an 84 and 58% decrease in GLUT-4 protein and mRNA, respectively, relative tocontrol rats. In the trained diabetic animals, sarcolemmal GLUT-4protein levels were only reduced by 50% relative to control values,whereas GLUT-4 mRNA were returned to control levels. The increase inmyocardial sarcolemmal GLUT-4 may be beneficial to the diabetic heartby enhancing myocardial glucose oxidation and cardiac performance

  相似文献   

8.
9.
10.
11.
12.
Background

Continuing hyperglycemia causes and exacerbate oxidative stress. Betanin as the principal pigment of red beet root has antioxidant, anti-inflammatory, and anti-diabetic properties. The purpose of this study was to investigate the potency of betanin on antioxidant defense in STZ-induced diabetic rats’ livers.

Methods

STZ at a single dose of 60 mg/kg body weight was intraperitoneally injected and betanin (10, 20, and 40 mg/kg/day) was administered orally for 28 days. Malondialdehyde (MDA), total antioxidant capacity (TAC), protein carbonyl (PC) levels, and the enzyme activity of superoxide dismutase (SOD), catalases and glutathione peroxidases (GPx) were evaluated in the liver. Furthermore, gene expression of Nrf2 and mentioned antioxidant enzymes were measured by Real-time PCR.

Results

Betanin (10 and 20 mg/kg) significantly reduced PC levels and increased antioxidant enzyme activity in diabetic rats compared to the control diabetic group (P?<?0.01). In comparison to the diabetic control group, all studied genes expression in diabetic rats were increased significantly with betanin at doses of 10 and 20 mg/kg (P?<?0.02). The increase in gene expression at 20 mg/kg of betanin was significantly stronger than others (P?<?0.015) except for the catalase (P?=?0.201), that was almost the same. Moreover, treatment of diabetic rats with 20 mg/kg of betanin could significantly increase TAC levels (P?<?0.05) and decrease MDA levels (P?<?0.001) compared to diabetic control group.

Conclusions

Betanin could increase the antioxidant capacity of liver tissue associated with the Nrf2-mediated pathway in a dose-dependent manner.

  相似文献   

13.
Impairment of adipose tissue and skeletal muscles accrued following type 1 diabetes is associated with protein misfolding and loss of adipose mass and skeletal muscle atrophy. Resistance training can maintain muscle mass by changing both inflammatory cytokines and stress factors in adipose tissue and skeletal muscle. The purpose of this study was to determine the effects of a 5-week ladder climbing resistance training program on the expression of Hsp70 and inflammatory cytokines in adipose tissue and fast-twitch flexor hallucis longus (FHL) and slow-twitch soleus muscles in healthy and streptozotocin-induced diabetic rats. Induction of diabetes reduced body mass, while resistance training preserved FHL muscle weight in diabetic rats without any changes in body mass. Diabetes increased Hsp70 protein content in skeletal muscles, adipose tissue, and serum. Hsp70 protein levels were decreased in normal and diabetic rats by resistance training in the FHL, but not soleus muscle. Furthermore, resistance training decreased inflammatory cytokines in FHL skeletal muscle. On the other hand, Hsp70 and inflammatory cytokine protein levels were increased by training in adipose tissue. Also, significant positive correlations between inflammatory cytokines in adipose tissue and skeletal muscles with Hsp70 protein levels were observed. In conclusion, we found that in diabetic rats, resistance training decreased inflammatory cytokines and Hsp70 protein levels in fast skeletal muscle, increased adipose tissue inflammatory cytokines and Hsp70, and preserved FHL muscle mass. These results suggest that resistance training can maintain skeletal muscle mass in diabetes by changing inflammatory cytokines and stress factors such as Hsp70 in skeletal muscle and adipose tissue.  相似文献   

14.
Streptozotocin (STZ)-induced diabetic animals are vulnerable to cold stress. Uncoupling proteins (UCPs) play an important role in regulating thermogenesis. We investigated the gene expressions of UCPs in brown adipose tissue (BAT), white adipose tissue (WAT), liver and gastrocnemius muscle of STZ-diabetic rats using Northern blot. UCP-1, -2 and -3 mRNA expressions in BAT were all remarkably lower in STZ-diabetic rats than those in control rats. Both UCP-2 and -3 gene expressions in gastrocnemius muscle were substantially elevated in STZ-diabetic rats and insulin treatment restored UCP gene expressions to normal levels. These results suggest that in STZ-diabetic rats, the overexpression of UCP-2 and UCP-3 in skeletal muscle provides a defense against hypothermogenesis caused by decreased UCPs in BAT.  相似文献   

15.
The regulation of intracellular pH during intense muscle contractions occurs via a number of different transport systems [e.g., monocarboxylate transporters (MCTs)] and via intracellular buffering (beta m(in vitro)). The aim of this study was to investigate the effects of an acute bout of high-intensity exercise on both MCT relative abundance and beta m(in vitro) in humans. Six active women volunteered for this study. Biopsies of the vastus lateralis were obtained at rest and immediately after 45 s of exercise at 200% of maximum O2 uptake. Beta m(in vitro) was determined by titration, and MCT relative abundance was determined in membrane preparations by Western blots. High-intensity exercise was associated with a significant decrease in both MCT1 (-24%) and MCT4 (-26%) and a decrease in beta m(in vitro) (-11%; 135 +/- 3 to 120 +/- 2 micromol H+ x g dry muscle(-1) x pH(-1); P < 0.05). These changes were consistently observed in all subjects, and there was a significant correlation between changes in MCT1 and MCT4 relative abundance (R2 = 0.92; P < 0.05). In conclusion, a single bout of high-intensity exercise decreased both MCT relative abundance in membrane preparations and beta m(in vitro). Until the time course of these changes has been established, researchers should consider the possibility that observed training-induced changes in MCT and beta m(in vitro) may be influenced by the acute effects of the last exercise bout, if the biopsy is taken soon after the completion of the training program. The implications that these findings have for lactate (and H+) transport following acute, exhaustive exercise warrant further investigation.  相似文献   

16.
Our goal was to examine whether exercise training (ExT) could normalize impaired nitric oxide synthase (NOS)-dependent dilation of cerebral (pial) arterioles during type 1 diabetes (T1D). We measured the in vivo diameter of pial arterioles in sedentary and exercised nondiabetic and diabetic rats in response to an endothelial NOS (eNOS)-dependent (ADP), an neuronal NOS (nNOS)-dependent [N-methyl-D-aspartate (NMDA)], and a NOS-independent (nitroglycerin) agonist. In addition, we measured superoxide anion levels in brain tissue under basal conditions in sedentary and exercised nondiabetic and diabetic rats. Furthermore, we used Western blot analysis to determine eNOS and nNOS protein levels in cerebral vessels/brain tissue in sedentary and exercised nondiabetic and diabetic rats. We found that ADP and NMDA produced a dilation of pial arterioles that was similar in sedentary and exercised nondiabetic rats. In contrast, ADP and NMDA produced only minimal vasodilation in sedentary diabetic rats. ExT restored impaired ADP- and NMDA-induced vasodilation observed in diabetic rats to that observed in nondiabetics. Nitroglycerin produced a dilation of pial arterioles that was similar in sedentary and exercised nondiabetic and diabetic rats. Superoxide levels in cortex tissue were similar in sedentary and exercised nondiabetic rats, were increased in sedentary diabetic rats, and were normalized by ExT in diabetic rats. Finally, we found that eNOS protein was increased in diabetic rats and further increased by ExT and that nNOS protein was not influenced by T1D but was increased by ExT. We conclude that ExT can alleviate impaired eNOS- and nNOS-dependent responses of pial arterioles during T1D.  相似文献   

17.
Acute exercise and training increase insulin action in skeletal muscle, but the mechanism responsible for this effect is unknown. Activation of the insulin receptor initiates signaling through both the phosphatidylinositol (PI) 3-kinase and the mitogen-activated protein kinase [MAPK, also referred to as extracellular signal-regulated kinases (ERK1/2)] pathways. Acute exercise has no effect on the PI3-kinase pathway signaling elements but does activate the MAPK pathway, which may play a role in the adaptation of muscle to exercise. It is unknown whether training produces a chronic effect on basal activity or insulin response of the MAPK pathway. The present study was undertaken to determine whether exercise training improves the activity of the MAPK pathway or its response to insulin in obese Zucker rats, a well-characterized model of insulin resistance. To accomplish this, obese Zucker rats were studied by using the hindlimb perfusion method with or without 7 wk of treadmill training. Activation of the MAPK pathway was determined in gastrocnemius muscles exposed in situ to insulin. Compared with lean Zucker rats, untrained obese Zucker rats had reduced basal and insulin-stimulated activities of ERK2 and its downstream target p90 ribosomal S6 kinase (RSK2). Seven weeks of training significantly increased basal and insulin-stimulated ERK2 and RSK2 activities, as well as insulin stimulation of MAPK kinase activity. This effect was maintained for at least 96 h in the case of ERK2. The training-induced increase in basal ERK2 activity was correlated with the increase in citrate synthase activity. Therefore, 7 wk of training increases basal and insulin-stimulated ERK2 activity. The increase in basal ERK2 activity may be related to the response of muscle to training.  相似文献   

18.
To evaluate the hypothesis that increasing the potential for glycolytic metabolism would benefit the functioning of infarcted myocardium, we investigated whether mild exercise training would increase the activities of oxidative enzymes, expression of carbohydrate-related transport proteins (monocarboxylate transporter MCT1 and glucose transporter GLUT4), and myosin heavy chain (MHC) isoforms. Myocardial infarction (MI) was produced by occluding the proximal left coronary artery in rat hearts for 30 min. After the rats performed 6 wk of run training on a treadmill, the wall of the left ventricle was dissected and divided into the anterior wall (AW; infarcted region) and posterior wall (PW; noninfarcted region). MI impaired citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities in the AW (P < 0.01) but not in the noninfarcted PW. No differences in the expression of MCT1 were found in either tissues of AW and PW after MI, whereas exercise training significantly increased the MCT1 expression in all conditions, except AW in the MI rats. Exercise training resulted in an increased expression of GLUT4 protein in the AW in the sham rats and in the PW in the MI rats. The relative amount of MHC-beta was significantly increased in the AW and PW in MI rats compared with sham rats. However, exercise training resulted in a significant increase of MHC-alpha expression in both AW and PW in both sham and MI rats (P < 0.01). These findings suggest that mild exercise training enhanced the potential for glycolytic metabolism and ATPase activity of the myocardium, even in the MI rats, ensuring a beneficial role in the remodeling of the heart.  相似文献   

19.
20.
Alkaline proteinase (chymase) was localized in skeletal muscle tissues from seven day streptozotocin-diabetic rats. Extruded mast cell granules containing proteinase were visible in the extracellular space and inside certain myofibers from both extensor digitorum longus (EDL) and soleus muscles. Additional diffuse staining was present in the cytoplasm of many EDL fibers. This evidence provides support for a possible role of muscle cells in the endocytosis of mast cell granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号