首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.  相似文献   

2.
Leptin controls body weight by activating its long form receptor (LEPRb). LEPRb binds to Janus kinase 2 (JAK2), a cytoplasmic tyrosine kinase that mediates leptin signaling. We previously reported that genetic deletion of SH2B1 (previously known as SH2-B), a JAK2-binding protein, results in severe leptin-resistant and obese phenotypes, indicating that SH2B1 is a key endogenous positive regulator of leptin sensitivity. Here we show that SH2B1 regulates leptin signaling by multiple mechanisms. In the absence of leptin, SH2B1 constitutively bound, via its non-SH2 domain region(s), to non-tyrosyl-phosphorylated JAK2, and inhibited JAK2. Leptin stimulated JAK2 phosphorylation on Tyr(813), which subsequently bound to the SH2 domain of SH2B1. Binding of the SH2 domain of SH2B1 to phospho-Tyr(813) in JAK2 enhanced leptin induction of JAK2 activity. JAK2 was required for leptin-stimulated phosphorylation of insulin receptor substrate 1 (IRS1), an upstream activator of the phosphatidylinositol 3-kinase pathway. Overexpression of SH2B1 enhanced both JAK2- and JAK2(Y813F)-mediated tyrosine phosphorylation of IRS1 in response to leptin, even though SH2B1 did not enhance JAK2(Y813F) activation. Leptin promoted the interaction of SH2B1 with IRS1. These data suggest that constitutive SH2B1-JAK2 interaction, mediated by the non-SH2 domain region(s) of SH2B1 and the non-Tyr(813) region(s) in JAK2, increases the local concentration of SH2B1 close to JAK2 and inhibits JAK2 activity. Leptin-stimulated SH2B1-JAK2 interaction, mediated by the SH2 domain of SH2B1 and phospho-Tyr(813) in JAK2, promotes JAK2 activation, thus globally enhancing leptin signaling. SH2B1-IRS1 interaction facilitates IRS1 phosphorylation by recruiting IRS1 to JAK2 and/or by protecting IRS1 from dephosphorylation, thus specifically enhancing leptin stimulation of the phosphatidylinositol 3-kinase pathway.  相似文献   

3.
Glucose enhances leptin signaling through modulation of AMPK activity   总被引:1,自引:0,他引:1  
Su H  Jiang L  Carter-Su C  Rui L 《PloS one》2012,7(2):e31636
Leptin exerts its action by binding to and activating the long form of leptin receptors (LEPRb). LEPRb activates JAK2 that subsequently phosphorylates and activates STAT3. The JAK2/STAT3 pathway is required for leptin control of energy balance and body weight. Defects in leptin signaling lead to leptin resistance, a primary risk factor for obesity. Body weight is also regulated by nutrients, including glucose. Defects in glucose sensing also contribute to obesity. Here we report crosstalk between leptin and glucose. Glucose starvation blocked the ability of leptin to stimulate tyrosyl phosphorylation and activation of JAK2 and STAT3 in a variety of cell types. Glucose dose-dependently enhanced leptin signaling. In contrast, glucose did not enhance growth hormone-stimulated phosphorylation of JAK2 and STAT5. Glucose starvation or 2-deoxyglucose-induced inhibition of glycolysis activated AMPK and inhibited leptin signaling; pharmacological inhibition of AMPK restored the ability of leptin to stimulate STAT3 phosphorylation. Conversely, pharmacological activation of AMPK was sufficient to inhibit leptin signaling and to block the ability of glucose to enhance leptin signaling. These results suggest that glucose and/or its metabolites play a permissive role in leptin signaling, and that glucose enhances leptin sensitivity at least in part by attenuating the ability of AMPK to inhibit leptin signaling.  相似文献   

4.
Chronic leptin treatment markedly enhances the effect of insulin on hepatic glucose production unproportionally with respect to body weight loss and increased insulin sensitivity. In the present study the cross-talk between insulin and leptin was evaluated in rat liver. Upon stimulation of JAK2 tyrosine phosphorylation, leptin induced JAK2 co-immunoprecipitation with STAT3, STAT5b, IRS-1 and IRS-2. This phenomenon parallels the leptin-induced tyrosine phosphorylation of STAT3, STAT5b, IRS-1 and IRS-2. Acutely injected insulin stimulated a mild increase in tyrosine phosphorylation of JAK2, STAT3 and STAT5b. Leptin was less effective than insulin in stimulating IRS phosphorylation and their association with PI 3-kinase. Simultaneous treatment with both hormones yielded no change in maximal phosphorylation of STAT3, IRS-1, IRS-2 and Akt, but led to a marked increase in tyrosine phosphorylation of JAK2 and STAT5b when compared with isolated administration of insulin or leptin. This indicates that there is a positive cross-talk between insulin and leptin signaling pathways at the level of JAK2 and STAT5b in rat liver.  相似文献   

5.
Molecular-level understanding of body weight control is essential for combating obesity. We show that female mice lacking tyrosine phosphatase epsilon (RPTPe) are protected from weight gain induced by high-fat food, ovariectomy, or old age and exhibit increased whole-body energy expenditure and decreased adiposity. RPTPe-deficient mice, in particular males, exhibit improved glucose homeostasis. Female nonobese RPTPe-deficient mice are leptin hypersensitive and exhibit reduced circulating leptin concentrations, suggesting that RPTPe inhibits hypothalamic leptin signaling in vivo. Leptin hypersensitivity persists in aged, ovariectomized, and high-fat-fed RPTPe-deficient mice, indicating that RPTPe helps establish obesity-associated leptin resistance. RPTPe associates with and dephosphorylates JAK2, thereby downregulating leptin receptor signaling. Leptin stimulation induces phosphorylation of hypothalamic RPTPe at its C-terminal Y695, which drives RPTPe to downregulate JAK2. RPTPe is therefore an inhibitor of hypothalamic leptin signaling in vivo, and provides controlled negative-feedback regulation of this pathway following its activation.  相似文献   

6.
Leptin is an adipocyte-derived hormone that regulates energy balance and neuroendocrine function primarily by acting on specific hypothalamic pathways. Resistance to the weight reducing effects of leptin is a feature of most cases of human and rodent obesity, yet the molecular basis of leptin resistance is poorly understood. We have previously identified suppressor of cytokine signaling-3 (Socs3) as a leptin-induced negative regulator of leptin receptor signaling and potential mediator of leptin resistance. However, due to the non-viability of mice with targeted disruption of Socs3 (ref. 6), the importance of Socs3 in leptin action in vivo was unclear. To determine the functional significance of Socs3 in energy balance in vivo we undertook studies in mice with heterozygous Socs3 deficiency (Socs3(+/-)). We report here that Socs3(+/-) mice display greater leptin sensitivity than wild-type control mice: Socs3(+/-) mice show both enhanced weight loss and increased hypothalamic leptin receptor signaling in response to exogenous leptin administration. Furthermore, Socs3(+/-) mice are significantly protected against the development of diet-induced obesity and associated metabolic complications. The level of Socs3 expression is thus a critical determinant of leptin sensitivity and obesity susceptibility in vivo and this molecule is a potential target for therapeutic intervention.  相似文献   

7.
The adipocyte-derived peptide leptin acts through binding to specific membrane receptors, of which six isoforms (obRa-f) have been identified up to now. Binding of leptin to its receptor induces activation of different signaling pathways, including the JAK/STAT, MAPK, IRS1, and SOCS3 signaling pathways. Since the circulating levels of leptin are elevated in obese individuals, and excess body weight has been shown to increase breast cancer risk in postmenopausal women, several studies addressed the role of leptin in breast cancer. Expression of leptin and its receptors has been demonstrated to occur in breast cancer cell lines and in human primary breast carcinoma. Leptin is able to induce the growth of breast cancer cells through activation of the Jak/STAT3, ERK1/2, and/or PI3K pathways, and can mediate angiogenesis by inducing the expression of vascular endothelial growth factor (VEGF). In addition, leptin induces transactivation of ErbB-2, and interacts in triple negative breast cancer cells with insulin like growth factor-1 (IGF-1) to transactivate the epidermal growth factor receptor (EGFR), thus promoting invasion and migration. Leptin can also affect the growth of estrogen receptor (ER)-positive breast cancer cells, by stimulating aromatase expression and thereby increasing estrogen levels through the aromatization of androgens, and by inducing MAPK-dependent activation of ER. Taken together, these findings suggest that the leptin system might play an important role in breast cancer pathogenesis and progression, and that it might represent a novel target for therapeutic intervention in breast cancer.  相似文献   

8.
Suppressor of cytokine signaling-3 (SOCS3) is thought to be involved in the development of central leptin resistance and obesity by inhibiting STAT3 pathway. Because phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in transducing leptin action in the hypothalamus, we examined whether SOCS3 exerted an inhibition on this pathway. We first determined whether leptin sensitivity in the hypothalamic PI3K pathway was increased in brain-specific Socs3-deficient (NesKO) mice. In NesKO mice, hypothalamic insulin receptor substrate-1 (IRS1)-associated PI3K activity was significantly increased at 30 min and remained elevated up to 2 h after leptin intraperitoneal injection, but in wild-type (WT) littermates, the significant increase was only at 30 min. Hypothalamic p-STAT3 levels were increased up to 5 h in NesKO as opposed to 2 h in WT mice. In food-restricted WT mice with reduced body weight, leptin increased hypothalamic PI3K activity only at 30 min, and p-STAT3 levels at 30-120 min postinjection. These results suggest increased leptin sensitivity in both PI3K and STAT3 pathways in the hypothalamus of NesKO mice, which was not due to a lean phenotype. In the next experiment with a clonal hypothalamic neuronal cell line expressing proopiomelanocortin, we observed that whereas leptin significantly increased IRS1-associated PI3K activity and p-JAK2 levels in cells transfected with control vector, it failed to do so in SOCS3-overexpressed cells. Altogether, these results imply a SOCS3 inhibition of the PI3K pathway of leptin signaling in the hypothalamus, which may be one of the mechanisms behind the development of central leptin resistance and obesity.  相似文献   

9.
Leptin controls body weight by activating the long form of the leptin receptor (LEPRb). Janus kinase 2 (JAK2) is associated with LEPRb and autophosphorylates in response to leptin. JAK2 also phosphorylates LEPRb, STAT3, and multiple other downstream molecules. Surprisingly, here we show that JAK2 is not required for leptin stimulation of STAT3 phosphorylation. Leptin time- and dose-dependently stimulated tyrosine phosphorylation of STAT3 in both human and mouse JAK2-null cells. Leptin also increased the viability of JAK2-null cells. Overexpression of c-Src or Fyn, two Src family members, promoted STAT3 phosphorylation, whereas inhibition of the endogenous Src family members by either pharmacological inhibitors or dominant negative Src(K298M) decreased the ability of leptin to stimulate the phosphorylation of STAT3 and ERK1/2. Leptin also stimulated tyrosine phosphorylation of kinase-inactive JAK2(K882E) in JAK2-null cells. Overexpression of JAK2(K882E) enhanced the ability of leptin to stimulate STAT3 phosphorylation in JAK2-null cells. Tyr1138 in LEPRb was required for leptin-stimulated phosphorylation of STAT3 but not JAK2(K882E). These data suggest that leptin stimulates non-JAK2 tyrosine kinase(s), including the Src family members, which phosphorylate JAK2, STAT3, and other molecules downstream of LEPRb. JAK2 mediates leptin signaling by both phosphorylating its substrates and forming a signaling complex as a scaffolding/adaptor protein. The non-JAK2 kinase(s) and JAK2 may act coordinately and synergistically to mediate leptin response.  相似文献   

10.
Leptin plays a pivotal role in the regulation of energy homeostasis and metabolism, primarily by acting on neurons in the hypothalamus that control food intake. However, leptin receptors are more widely expressed in the brain suggesting additional, as yet unknown, functions of leptin. Here we show that both embryonic and adult hippocampal neurons express leptin receptors coupled to activation of STAT3 and phosphatidylinositol 3-kinase-Akt signaling pathways. Leptin protects hippocampal neurons against cell death induced by neurotrophic factor withdrawal and excitotoxic and oxidative insults. The neuroprotective effect of leptin is antagonized by the JAK2-STAT3 inhibitor AG-490, STAT3 decoy DNA, and phosphatidylinositol 3-kinase/Akt inhibitors but not by an inhibitor of MAPK. Leptin induces the production of manganese superoxide dismutase and the anti-apoptotic protein Bcl-xL, and stabilizes mitochondrial membrane potential and lessens mitochondrial oxidative stress. Leptin receptor-deficient mice (db/db mice) are more vulnerable to seizure-induced hippocampal damage, and intraventricular administration of leptin protects neurons against seizures. By enhancing mitochondrial resistance to apoptosis and excitotoxicity, our findings suggest that leptin signaling serves a neurotrophic function in the developing and adult hippocampus.  相似文献   

11.
Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-8 production caused by leptin in both rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF). RASF and OASF expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-8 production. Leptin-mediated IL-8 production was attenuated by OBRl receptor antisense oligonucleotide, JAK2 inhibitor or STAT3 small interference RNA (siRNA). Transfection with insulin receptor substrate (IRS)-1 siRNA or dominant-negative mutant of p85 and Akt or pretreatment with phosphatidylinositol 3-kinase inhibitor (Ly294002 and wortmannin), Akt inhibitor, NF-kappaB inhibitor (PDTC) and NF-kappaB inhibitor peptide also inhibited the potentiating action of leptin. Stimulation of RASF with leptin activated IkappaB kinase alpha/beta (IKK alpha/beta), p65 phosphorylation at Ser(276), p65 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Moreover, pretreatment with p300 inhibitor (curcumin) also blocked IL-8 expression. The binding of p65 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 acetylation on the IL-8 promoter was enhanced by leptin, which was inhibited by wortmannin, Akt inhibitor or IRS-1 siRNA. These results suggest that leptin increased IL-8 production in synovial fibroblast via the OBRl/JAK2/STAT3 pathway, as well as the activation of IRS1/PI3K/Akt/NF-kappaB-dependent pathway and the subsequent recruitment of p300.  相似文献   

12.
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy balance and of the effects of leptin on food intake and fatty acid oxidation. Obesity is usually associated with resistance to the effects of leptin on food intake and body weight. To determine whether diet-induced obesity (DIO) impairs the AMPK response to leptin in muscle and/or hypothalamus, we fed FVB mice a high fat (55%) diet for 10-12 weeks. Leptin acutely decreased food intake by approximately 30% in chow-fed mice. DIO mice tended to eat less, and leptin had no effect on food intake. Leptin decreased respiratory exchange ratio in chow-fed mice indicating increased fatty acid oxidation. Respiratory exchange ratio was low basally in high fat-fed mice, and leptin had no further effect. Leptin (3 mg/kg intraperitoneally) increased alpha2-AMPK activity 2-fold in muscle in chow-fed mice but not in DIO mice. Leptin decreased acetyl-CoA carboxylase activity 40% in muscle from chow-fed mice. In muscle from DIO mice, acetyl-CoA carboxylase activity was basally low, and leptin had no further effect. In paraventricular, arcuate, and medial hypothalamus of chow-fed mice, leptin inhibited alpha2-AMPK activity but not in DIO mice. In addition, leptin increased STAT3 phosphorylation 2-fold in arcuate of chow-fed mice, but this effect was attenuated because of elevated basal STAT3 phosphorylation in DIO mice. Thus, DIO in FVB mice alters alpha2-AMPK in muscle and hypothalamus and STAT3 in hypothalamus and impairs further effects of leptin on these signaling pathways. Defective responses of AMPK to leptin may contribute to resistance to leptin action on food intake and energy expenditure in obese states.  相似文献   

13.
14.
Insulin regulates glucose homeostasis by binding and activating the insulin receptor, and defects in insulin responses (insulin resistance) induce type 2 diabetes. SH2-B, an Src homology 2 (SH2) and pleckstrin homology domain-containing adaptor protein, binds via its SH2 domain to insulin receptor in response to insulin; however, its physiological role remains unclear. Here we show that SH2-B was expressed in the liver, skeletal muscle, and fat. Systemic deletion of SH2-B impaired insulin receptor activation and signaling in the liver, skeletal muscle, and fat, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and IRS2 and activation of the phosphatidylinositol 3-kinase/Akt and the Erk1/2 pathways. Consequently, SH2-B-/- knockout mice developed age-dependent hyperinsulinemia, hyperglycemia, and glucose intolerance. Moreover, SH2-B directly enhanced autophosphorylation of insulin receptor and tyrosine phosphorylation of IRS1 and IRS2 in an SH2 domain-dependent manner in cultured cells. Our data suggest that SH2-B is a physiological enhancer of insulin receptor activation and is required for maintaining normal insulin sensitivity and glucose homeostasis during aging.  相似文献   

15.
Leptin has pleiotropic effects on glucose homeostasis and feeding behavior. Here, we validate the use of a cell-permeable phosphopeptide that blocks STAT3 activation in vivo. The combination of this biochemical approach with stereotaxic surgical techniques allowed us to pinpoint the contribution of hypothalamic STAT3 to the acute effects of leptin on food intake and glucose homeostasis. Leptin's ability to acutely reduce food intake critically depends on intact STAT3 signaling. Likewise, hypothalamic signaling of leptin through STAT3 is required for the acute effects of leptin on liver glucose fluxes. Lifelong obliteration of STAT3 signaling via the leptin receptor in mice (s/s mice) results in severe hepatic insulin resistance that is comparable to that observed in db/db mice, devoid of leptin receptor signaling. Our results demonstrate that the activation of the hypothalamic STAT3 pathway is an absolute requirement for the effects of leptin on food intake and hepatic glucose metabolism.  相似文献   

16.
17.
Leptin administration enhances lipid oxidation in skeletal muscle. Nevertheless, direct and chronic effect of leptin has not been well characterized. Here, we measured the effect of leptin on skeletal muscles and their signaling pathways using differentiated C2C12 myotubes and primary myotube cultures. Differentiated myotubes expressed both the short and long forms of leptin receptors. Leptin increased lipid oxidation in myotubes in a concentration- and time-dependent manner, with significant induction of lipid oxidation occurring after 6 h. Actinomycin D completely blocked leptin-induced lipid oxidation. Leptin significantly increased phosphorylation of JAK2 and STAT3 in myotubes, and leptin-induced lipid oxidation was abolished by treatment with a JAK2 inhibitor or STAT3 siRNA. We then used mouse myotubes to measure these effects under physiological conditions. Leptin increased lipid oxidation, which again was blocked by a JAK2 inhibitor and STAT3 siRNA. These results suggest that the JAK2/STAT3 signaling pathway may underlie the chronic effects of leptin on lipid oxidation in skeletal muscles.  相似文献   

18.
19.
Leptin is recognized as a profibrogenic hormone in the liver, but the mechanisms involved have not been clarified. The tissue inhibitor of metalloproteinase (TIMP)-1, which acts through inhibition of collagen degradation, is synthesized by activated hepatic stellate cells (HSC) in response to fibrogenic substances. The capacity of leptin to induce TIMP-1 and its signaling molecules were investigated in a human HSC cell line, LX-2. Leptin stimulated TIMP-1 protein, mRNA, and promoter activity. JAK1 and -2, as well as STAT3 and -5, were activated. After leptin, there was increased expression of tyrosine 1141-phosphorylated leptin receptor, which may contribute to STAT3 activation. AG 490, a JAK inhibitor, blocked JAK phosphorylation with concomitant inhibition of STAT activation, TIMP-1 mRNA expression, and promoter activity. Leptin also induced an oxidative stress, which was inhibited by AG 490, indicating a JAK mediation process. ERK1/2 MAPK and p38 were activated, which was prevented by catalase, indicating an H2O2-dependent mechanism. Catalase treatment resulted in total suppression of TIMP-1 mRNA expression and promoter activity. SB203580, a p38 inhibitor, prevented p38 activation and reduced TIMP-1 message half-life with down-regulation of TIMP-1 mRNA. These changes were reproduced by overexpression of the dominant negative p38alpha and p38beta mutants. PD098059, an ERK1/2 inhibitor, opposed ERK1/2 activation and TIMP-1 promoter activity, leading to TIMP-1 mRNA down-regulation. Thus, leptin has a direct action on liver fibrogenesis by stimulating TIMP-1 production in activated HSC. This process appears to be mediated by the JAK/STAT pathway via the leptin receptor long form and the H2O2-dependent p38 and ERK1/2 pathways via activated JAK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号