首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

In recent years it has become clear that small non-coding RNAs function as regulatory elements in bacterial virulence and bacterial stress responses. We tested for the presence of the small non-coding GcvB RNAs in Y. pestis as possible regulators of gene expression in this organism.  相似文献   

2.
Precise regulation of gene expression is crucial for living cells to adapt for survival in diverse environmental conditions. Among the common cellular regulatory mechanisms, RNA-based regulators play a key role in all domains of life. Discovery of regulatory RNAs have made a paradigm shift in molecular biology as many regulatory functions of RNA have been identified beyond its canonical roles as messenger, ribosomal and transfer RNA. In the complex regulatory RNA network, riboswitches, small RNAs, and RNA thermometers can be identified as some of the key players. Herein, we review the discovery, mechanism, and potential therapeutic use of these classes of regulatory RNAs mainly found in bacteria. Being highly adaptive organisms that inhabit a broad range of ecological niches, bacteria have adopted tight and rapid-responding gene regulation mechanisms. This review aims to highlight how bacteria utilize versatile RNA structures and sequences to build a sophisticated gene regulation network.  相似文献   

3.
4.
5.
6.
7.
8.
Bacterial two-component systems (TCSs) and small regulatory RNAs (sRNAs) form densely interconnected networks that integrate and transduce information from the environment into fine-tuned changes of gene expression. Many TCSs control target genes indirectly through regulation of sRNAs, which in turn regulate gene expression by base-pairing with mRNAs or targeting a protein. Conversely, sRNAs may control TCS synthesis, thereby recruiting the TCS regulon to other regulatory networks. Several TCSs control expression of multiple homologous sRNAs providing the regulatory networks with further flexibility. These sRNAs act redundantly, additively or hierarchically on targets. The regulatory speed of sRNAs and their unique features in gene regulation make them ideal players extending the flexibility, dynamic range or timing of TCS signaling.  相似文献   

9.
Small RNAs derived from longer non-coding RNAs   总被引:3,自引:0,他引:3  
Röther S  Meister G 《Biochimie》2011,93(11):1905-1915
  相似文献   

10.
11.
小RNAs 是生命活动非常重要且广泛存在的调节因子,可以调控基因表达和基因组稳定性. 然而最近的研究发现,小RNAs与它们的靶标间的调控是相互的调控(reciprocal regulation),因为它们的靶标反过来也可以调控小RNAs. 也就是说,它们的靶标可以通过自身与小RNA的互补程度或自身丰度水平,引发小RNAs无需模板地在其3′ 端添加核苷酸,导致小RNAs降解. 另外,病毒也可以通过这种方式调控宿主基因的表达. 这种现象的发现挑战了以前对小RNAs作用过程的理解,这不仅可以解释以前一些关于小RNAs所不能解释的问题,而且对于转基因技术、反义核酸技术和RNA干扰技术都有重要的启示作用. 本文综述了这种靶标引发小RNA修饰并降解现象的研究进展和应用前景.  相似文献   

12.
13.
Cyanobacteria are photosynthetic bacteria that populate widely different habitats. Accordingly, cyanobacteria exhibit a wide spectrum of lifestyles, physiologies, and morphologies and possess genome sizes and gene numbers which may vary by up to a factor of ten within the phylum. Consequently, large differences exist between individual species in the size and complexity of their regulatory networks. Several non-coding RNAs have been identified that play crucial roles in the acclimation responses of cyanobacteria to changes in the environment. Some of these regulatory RNAs are conserved throughout the cyanobacterial phylum, while others exist only in a few taxa. Here we give an overview on characterized regulatory RNAs in cyanobacteria, with a focus on regulators of photosynthesis, carbon and nitrogen metabolism. However, chances are high that these regulators represent just the tip of the iceberg.  相似文献   

14.
15.
16.
17.
18.
19.
Marcus E 《Cell》2004,116(1):1-2
Small regulatory RNAs can act by pairing with their target messages, targeting themselves and the mRNA for degradation; Lenz et al. (this issue of Cell) now report that multiple small RNAs are essential regulators of the quorum-sensing systems of Vibrio species, including the regulation of virulence in V. cholerae.  相似文献   

20.
Translational regulation of the stationary phase sigma factor RpoS is mediated by the formation of a double-stranded RNA stem-loop structure in the upstream region of the rpoS messenger RNA, occluding the translation initiation site. The interaction of the rpoS mRNA with a small RNA, DsrA, disrupts the double-strand pairing and allows high levels of translation initiation. We screened a multicopy library of Escherichia coli DNA fragments for novel activators of RpoS translation when DsrA is absent. Clones carrying rprA (RpoS regulator RNA) increased the translation of RpoS. The rprA gene encodes a 106 nucleotide regulatory RNA. As with DsrA, RprA is predicted to form three stem-loops and is highly conserved in Salmonella and Klebsiella species. Thus, at least two small RNAs, DsrA and RprA, participate in the positive regulation of RpoS translation. Unlike DsrA, RprA does not have an extensive region of complementarity to the RpoS leader, leaving its mechanism of action unclear. RprA is non-essential. Mutations in the gene interfere with the induction of RpoS after osmotic shock when DsrA is absent, demonstrating a physiological role for RprA. The existence of two very different small RNA regulators of RpoS translation suggests that such additional regulatory RNAs are likely to exist, both for regulation of RpoS and for regulation of other important cellular components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号