首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Small RNAs mediate gene silencing by binding Argonaute/Piwi proteins to regulate target RNAs. Here, we describe small RNA profiling of the adult testes of Callithrix jacchus, the common marmoset. The most abundant class of small RNAs in the adult testis was piRNAs, although 353 novel miRNAs but few endo-siRNAs were also identified. MARWI, a marmoset homolog of mouse MIWI and a very abundant PIWI in adult testes, associates with piRNAs that show characteristics of mouse pachytene piRNAs. As in other mammals, most marmoset piRNAs are derived from conserved clustered regions in the genome, which are annotated as intergenic regions. However, unlike in mice, marmoset piRNA clusters are also found on the X chromosome, suggesting escape from meiotic sex chromosome inactivation by the X-linked clusters. Some of the piRNA clusters identified contain antisense-orientated pseudogenes, suggesting the possibility that pseudogene-derived piRNAs may regulate parental functional protein-coding genes. More piRNAs map to transposable element (TE) subfamilies when they have copies in piRNA clusters. In addition, the strand bias observed for piRNAs mapped to each TE subfamily correlates with the polarity of copies inserted in clusters. These findings suggest that pachytene piRNA clusters determine the abundance and strand-bias of TE-derived piRNAs, may regulate protein-coding genes via pseudogene-derived piRNAs, and may even play roles in meiosis in the adult marmoset testis.  相似文献   

4.
5.
6.
7.
Transposable elements (TEs) are mobile genetic elements that can have many deleterious effects on the fitness of their host. The germline-specific PIWI pathway guards the genome against TEs, deriving its specificity from sequence complementarity between PIWI-bound small RNAs (piRNAs) and the TEs. The piRNAs are derived from so-called piRNA clusters. Recent studies have demonstrated that the piRNA repertoire can be adjusted to accommodate recent TE invasions by capturing invading TEs in piRNA loci. Thus far, no information concerning piRNA divergence is available from vertebrates. We present piRNA analyses of two relatively divergent zebrafish strains. We find that significant differences in the piRNA populations have accumulated, most notably among active class I TEs. This divergence can be split into differences in piRNA abundance per element and differences in sense/antisense polarity ratios. In crosses between animals of the different strains, many of these differences are resolved in the progeny. However, some differences remain, often leaning to the maternally contributed piRNA population. These differences can be detected at least two generations later. Our data illustrate, for the first time, the fluidity of piRNA populations in vertebrates and how the established diversity is transmitted to future generations.  相似文献   

8.
PIWI proteins and their associated PIWI-interacting RNAs (piRNAs) protect genome integrity by silencing transposons in animal germlines. The molecular mechanisms and components responsible for piRNA biogenesis remain elusive. PIWI proteins contain conserved symmetrical dimethylarginines (sDMAs) that are specifically targeted by TUDOR domain-containing proteins. Here we report that the sDMAs of PIWI proteins play crucial roles in PIWI localization and piRNA biogenesis in Bombyx mori-derived BmN4 cells, which harbor fully functional piRNA biogenesis machinery. Moreover, RNAi screenings for Bombyx genes encoding TUDOR domain-containing proteins identified BmPAPI, a Bombyx homolog of Drosophila PAPI, as a factor modulating the length of mature piRNAs. BmPAPI specifically recognized sDMAs and interacted with PIWI proteins at the surface of the mitochondrial outer membrane. BmPAPI depletion resulted in 3′-terminal extensions of mature piRNAs without affecting the piRNA quantity. These results reveal the BmPAPI-involved piRNA precursor processing mechanism on mitochondrial outer membrane scaffolds.  相似文献   

9.
10.
11.
12.
In Drosophila, PIWI proteins and bound PIWI‐interacting RNAs (piRNAs) form the core of a small RNA‐mediated defense system against selfish genetic elements. Within germline cells, piRNAs are processed from piRNA clusters and transposons to be loaded into Piwi/Aubergine/AGO3 and a subset of piRNAs undergoes target‐dependent amplification. In contrast, gonadal somatic support cells express only Piwi, lack signs of piRNA amplification and exhibit primary piRNA biogenesis from piRNA clusters. Neither piRNA processing/loading nor Piwi‐mediated target silencing is understood at the genetic, cellular or molecular level. We developed an in vivo RNAi assay for the somatic piRNA pathway and identified the RNA helicase Armitage, the Tudor domain containing RNA helicase Yb and the putative nuclease Zucchini as essential factors for primary piRNA biogenesis. Lack of any of these proteins leads to transposon de‐silencing, to a collapse in piRNA levels and to a failure in Piwi‐nuclear accumulation. We show that Armitage and Yb interact physically and co‐localize in cytoplasmic Yb bodies, which flank P bodies. Loss of Zucchini leads to an accumulation of Piwi and Armitage in Yb bodies, indicating that Yb bodies are sites of primary piRNA biogenesis.  相似文献   

13.
In the germline of animals, PIWI interacting (pi)RNAs protect the genome against the detrimental effects of transposon mobilization. In Drosophila, piRNA-mediated cleavage of transposon RNA triggers the production of responder piRNAs via ping-pong amplification. Responder piRNA 3′ end formation by the nuclease Zucchini is coupled to the production of downstream trailer piRNAs, expanding the repertoire of transposon piRNA sequences. In Aedes aegypti mosquitoes, piRNAs are generated from viral RNA, yet, it is unknown how viral piRNA 3′ ends are formed and whether viral RNA cleavage gives rise to trailer piRNA production. Here we report that in Ae. aegypti, virus- and transposon-derived piRNAs have sharp 3′ ends, and are biased for downstream uridine residues, features reminiscent of Zucchini cleavage of precursor piRNAs in Drosophila. We designed a reporter system to study viral piRNA 3′ end formation and found that targeting viral RNA by abundant endogenous piRNAs triggers the production of responder and trailer piRNAs. Using this reporter, we identified the Ae. aegypti orthologs of Zucchini and Nibbler, two nucleases involved in piRNA 3′ end formation. Our results furthermore suggest that autonomous piRNA production from viral RNA can be triggered and expanded by an initial cleavage event guided by genome-encoded piRNAs.  相似文献   

14.
Piwi-interacting RNAs (piRNAs) are a class of short chain noncoding RNAs that are constituted by 26-30 nucleotides (nt) and can couple with PIWI protein family. piRNAs were initially described in germline cells and are believed to be critical regulators of the maintenance of reproductive line. Increasing evidence has extended our perspectives on the biological significance of piRNAs and indicated that they could still affect somatic gene expression through DNA methylation, chromatin modification and transposon silencing, etc. Many studies have revealed that the dysregulation of piRNAs might contribute to diverse diseases through epigenetic changes represented by DNA methylation and chromatin modification. In this review, we summarized piRNA/PIWI protein-mediated DNA methylation regulation mechanisms and methylation changes caused by piRNA/PIWI proteins in different diseases, especially cancers. Since DNA methylation and inhibitory chromatin marks represented by histone H3 lysine 9 (H3K9) methylation frequently cooperate to silence genomic regions, we also included methylation in chromatin modification within this discussion. Furthermore, we discussed the potential clinical applications of piRNAs as a new type promising biomarkers for cancer diagnosis, as well as the significance of piRNA/PIWI protein-associated methylation changes in treatment, providing disparate insights into the potential applications of them.  相似文献   

15.
16.
In animal gonads, transposable elements are actively repressed to preserve genome integrity through the PIWI-interacting RNA (piRNA) pathway. In mice, piRNAs are abundantly expressed in male germ cells, and form effector complexes with three distinct PIWIs. The depletion of individual Piwi genes causes male-specific sterility with no discernible phenotype in female mice. Unlike mice, most other mammals have four PIWI genes, some of which are expressed in the ovary. Here, purification of PIWI complexes from oocytes of the golden hamster revealed that the size of the PIWIL1-associated piRNAs changed during oocyte maturation. In contrast, PIWIL3, an ovary-specific PIWI in most mammals, associates with short piRNAs only in metaphase II oocytes, which coincides with intense phosphorylation of the protein. An improved high-quality genome assembly and annotation revealed that PIWIL1- and PIWIL3-associated piRNAs appear to share the 5′-ends of common piRNA precursors and are mostly derived from unannotated sequences with a diminished contribution from TE-derived sequences, most of which correspond to endogenous retroviruses. Our findings show the complex and dynamic nature of biogenesis of piRNAs in hamster oocytes, and together with the new genome sequence generated, serve as the foundation for developing useful models to study the piRNA pathway in mammalian oocytes.  相似文献   

17.
Genetic studies and large-scale sequencing experiments have revealed that the PIWI subfamily proteins and PIWI-interacting RNAs (piRNAs) play an important role in germ line development and transposon control. Biochemical studies in vitro have greatly contributed to the understanding of small interfering RNA (siRNA) and microRNA (miRNA) pathways. However, in vitro analyses of the piRNA pathway have been thus far quite challenging, because their expression is largely restricted to the germ line. Here we report that Bombyx mori ovary-derived cultured cell line, BmN4, endogenously expresses two PIWI subfamily proteins, silkworm Piwi (Siwi) and Ago3 (BmAgo3), and piRNAs associated with them. Siwi-bound piRNAs have a strong bias for uridine at their 5′ end and BmAgo3-bound piRNAs are enriched for adenine at position 10. In addition, Siwi preferentially binds antisense piRNAs, whereas BmAgo3 binds sense piRNAs. Moreover, we identified many pairs in which Siwi-bound antisense and BmAgo3-bound sense piRNAs are overlapped by precisely 10 nt at their 5′ ends. These signatures are known to be important for secondary piRNA biogenesis in other organisms. Taken together, BmN4 is a unique cell line in which both primary and secondary steps of piRNA biogenesis pathways are active. This cell line would provide useful tools for analysis of piRNA biogenesis and function.  相似文献   

18.
Transposable element activity is repressed in the germline in animals by PIWI-interacting RNAs (piRNAs), a class of small RNAs produced by genomic loci mostly composed of TE sequences. The mechanism of induction of piRNA production by these loci is still enigmatic. We have shown that, in Drosophila melanogaster, a cluster of tandemly repeated P-lacZ-white transgenes can be activated for piRNA production by maternal inheritance of a cytoplasm containing homologous piRNAs. This activated state is stably transmitted over generations and allows trans-silencing of a homologous transgenic target in the female germline. Such an epigenetic conversion displays the functional characteristics of a paramutation, i.e., a heritable epigenetic modification of one allele by the other. We report here that piRNA production and trans-silencing capacities of the paramutated cluster depend on the function of the rhino, cutoff, and zucchini genes involved in primary piRNA biogenesis in the germline, as well as on that of the aubergine gene implicated in the ping-pong piRNA amplification step. The 21-nt RNAs, which are produced by the paramutated cluster, in addition to 23- to 28-nt piRNAs are not necessary for paramutation to occur. Production of these 21-nt RNAs requires Dicer-2 but also all the piRNA genes tested. Moreover, cytoplasmic transmission of piRNAs homologous to only a subregion of the transgenic locus can generate a strong paramutated locus that produces piRNAs along the whole length of the transgenes. Finally, we observed that maternally inherited transgenic small RNAs can also impact transgene expression in the soma. In conclusion, paramutation involves both nuclear (Rhino, Cutoff) and cytoplasmic (Aubergine, Zucchini) actors of the piRNA pathway. In addition, since it is observed between nonfully homologous loci located on different chromosomes, paramutation may play a crucial role in epigenome shaping in Drosophila natural populations.  相似文献   

19.
piRNA(Piwi-interacting RNA)是从哺乳动物生殖细胞中分离得到的一类长度约为30nt的小RNA,并且这种小RNA与PIWI蛋白家族成员相结合才能发挥它的调控作用。目前,越来越多的文献表明piRNA在生殖细胞的生长发育中的调控是由于Piwi-piRNA复合物引起的基因沉默导致的,但由于对piRNA的研究尚处于初级阶段,它的一些具体的功能和生源论尚在研究当中。本文主要综述了piRNA的最新研究进展。  相似文献   

20.
The PIWI-interacting RNA (piRNA) pathway is essential for transposon silencing in many model organisms. Its remarkable efficiency relies on a sophisticated amplification mechanism known as the ping-pong loop. In Alphavirus-infected Aedes mosquitoes, piRNAs with sequence features that suggest ping-pong-dependent biogenesis are produced from viral RNA. The PIWI family in Aedes mosquitoes is expanded when compared to other model organisms, raising the possibility that individual PIWI proteins have functionally diversified in these insects. Here, we show that Piwi5 and Ago3, but none of the other PIWI family members, are essential for piRNA biogenesis from Sindbis virus RNA in infected Aedes aegypti cells. In contrast, the production of piRNAs from transposons relies on a more versatile set of PIWI proteins, some of which do not contribute to viral piRNA biogenesis. These results indicate that functional specialization allows distinct mosquito PIWI proteins to process RNA from different endogenous and exogenous sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号