首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Small nucleolar RNAs constitute a family of newly discovered non-coding small RNAs, most of which function in guiding RNA modifications. Two prevalent types of modifications are 2'-O-methylation and pseudouridylation. The modification is directed by the formation of a canonical small nucleolar RNA-target duplex. Initially, RNA-guided modification was shown to take place on rRNA, but recent studies suggest that small nuclear RNA, mRNA, tRNA, and the trypanosome spliced leader RNA also undergo guided modifications. Trypanosomes contain more modifications and potentially more small nucleolar RNAs than yeast, and the increased number of modifications may help to preserve ribosome function under adverse environmental conditions during the cycling between the insect and mammalian host. The genome organisation in clusters carrying the two types of small nucleolar RNAs, C/D and H/ACA-like RNAs, resembles that in plants. However, the trypanosomatid H/ACA RNAs are similar to those found in Archaea and are composed of a single hairpin that may represent the primordial H/ACA RNA. In this review we summarise this new field of trypanosome small nucleolar RNAs, emphasising the open questions regarding the number of small nucleolar RNAs, the repertoire, genome organisation, and the unique function of guided modifications in these protozoan parasites.  相似文献   

3.
The small RNAs of Moloney murine leukemia virus (M-MuLV) were fractionated into at least 15 species by two-dimensional polyacrylamide gel electrophoresis. The pattern of small RNAs is significantly different from that of Rous sarcoma virus. A subset of the virion small RNAs is associated with the genome RNA in the 70S complex. One of the associated molecules, a cellular tRNA, is tightly bound to the genome RNA and serves as the major primer for M-MuLV RNA-directed DNA synthesis in vitro.  相似文献   

4.
5.
6.
邱涛  张菁  陆仁后  朱作言 《病毒学报》2001,17(2):140-143
草鱼出血病病毒基因组由 11条dsRNA片段组成。最近在研究其基因组时发现 ,在病毒基因组外存在许多核酸成份 ,但在核苷酸数量上少于基因组成份 ,表现为较小分子量的RNA片段。在完整地克隆了这些片段的全长cDNA后 ,测定了其中两个克隆的序列组成 ,发现它们为病毒基因组经剪切后的部分片段 ,已经重新装配 ,而且都含有原基因组某一片段 3′端和 5′端的保守区和倒转重复区 ,缺失中间部分。根据其特点来看 ,它们应为目前病毒学研究的重要材料———缺损性干扰颗粒的亚基因组成份。  相似文献   

7.
The small RNA world of plants   总被引:7,自引:0,他引:7  
  相似文献   

8.
9.
10.
microRNAs (miRNAs) and small interfering RNAs (siRNAs), which constitute two major classes of endogenous small RNAs in plants, impact a multitude of developmental and physiological processes by imparting sequence specificity to gene and genome regulation. Although lacking the third major class of small RNAs found in animals, Piwi-interacting RNAs (piRNAs), plants have expanded their repertoire of endogenous siRNAs, some of which fulfill similar molecular and developmental functions as piRNAs in animals. Research on plant miRNAs and siRNAs has contributed invaluable insights into small RNA biology, thanks to the highly conserved molecular logic behind the biogenesis and actions of small RNAs. Here, I review progress in the plant small RNA field in the past two years, with an emphasis on recent findings related to plant development. I do not recount the numerous developmental processes regulated by small RNAs; instead, I focus on major principles that have been derived from recent studies and draw parallels, when applicable, between plants and animals.  相似文献   

11.
The search of miRNA genes in Bombyx mori nuclear polyhedrosis virus genome region complementary to very late genes has been carried out. The search miRNA algorithm in silico was developed by us. It was shown that NPV B. mori genome region containing orf4 gene complementary to ph gene encodes the potential miRNA. NPV B. mori genome region containing p74 gene complementary to p10 gene encodes mature miRNA and potential miRNA. The genome region containing orf1629 encodes two small non-coding RNAs complementary to orf 5'-end of polyhedrin miRNA. From obtained results it is proposed that two small noncoding RNAs complementary to regions of polyhedrin miRNA are included in polyhedra.  相似文献   

12.
13.
14.
15.
Small RNAs (approximately 20 to 24 nucleotides) function as naturally occurring molecules critical in developmental pathways in plants and animals. Here we analyze small RNA populations from mature rice grain and seedlings by pyrosequencing. Using a clustering algorithm to locate regions producing small RNAs, we classified hotspots of small RNA generation within the genome. Hotspots here are defined as 1 kb regions within which small RNAs are significantly overproduced relative to the rest of the genome. Hotspots were identified to facilitate characterization of different categories of small RNA regulatory elements. Included in the hotspots, we found known members of 23 miRNA families representing 92 genes, one trans acting siRNA (ta-siRNA) gene, novel siRNA-generating coding genes and phased siRNA generating genes. Interestingly, over 20% of the small RNA population in grain came from a single foldback structure, which generated eight phased 21-nt siRNAs. This is reminiscent of a newly arising miRNA derived from duplication of progenitor genes. Our results provide data identifying distinct populations of small RNAs, including phased small RNAs, in mature grain to facilitate characterization of small regulatory RNA expression in monocot species.  相似文献   

16.
Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants   总被引:2,自引:0,他引:2  
Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

17.
Small RNA metabolism in Arabidopsis   总被引:1,自引:0,他引:1  
  相似文献   

18.
RNA silencing is a broadly conserved machinery and is involved in many biological events. Small RNAs are key molecules in RNA silencing pathway that guide sequence-specific gene regulations and chromatin modifications. The silencing machinery works as an anti-viral defense in virus-infected plants. It is generally accepted that virus-specific small interfering (si) RNAs bind to the viral genome and trigger its cleavage. Previously, we have cloned and obtained sequences of small RNAs from Arabidopsis thaliana infected or uninfected with crucifer Tobacco mosaic virus. MicroRNAs (miRNAs) accumulated to a higher percentage of total small RNAs in the virus-infected plants. This was partly because the viral replication protein binds to the miRNA/miRNA* duplexes. In the present study, we mapped the sequences of small RNAs other than virus-derived siRNAs to the Arabidopsis genome and assigned each small RNA. It was demonstrated that only miRNAs increased as a result of viral infection. Furthermore, some newly identified miRNAs and miRNA candidates were found from the virus-infected plants despite a limited number of examined sequences. We propose that it is advantageous to use virus-infected plants as a source for cloning and identifying new miRNAs.  相似文献   

19.
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are two major classes of small non-coding RNAs with important roles in the regulation of gene expression, such as mRNA degradation and translational repression, heterochromatin formation, genome defense against transposons and viruses in eukaryotes. MiRNA- and siRNA-directed processes have emerged as a regulatory mechanism for growth and development in both animals and plants. To identify small RNAs that might be involved in vernalization, a process accelerating flowering brought on by a long period of cold, we generated a library of small RNAs from Arabidopsis that had been subject to vernalization. From the analysis of the library, 277 small RNAs were identified. They were distributed throughout all the five chromosomes. While the vast majority of small RNA genes locate on intergenic regions, others locate on repeat-rich regions, centromeric regions, transposon-related genes, and protein-coding genes. Five of them were mapped to convergent overlapping gene pairs. Two-hundred and forty of them were novel endogenous small RNAs that have not been cloned yet from plants grown under normal conditions and other environmental stresses. Seven putative miRNAs were up- or down-regulated by vernalization. In conclusion, many small RNAs were identified from vernalized Arabidopsis and some of these identified small RNAs may play roles in plant responses to vernalization.  相似文献   

20.
Small RNAs produced by an RNAi-related mechanism are involved in DNA elimination during development of the somatic macronucleus from the germline micronucleus in Tetrahymena. The properties of these small RNAs can explain how the primary sequence of the parental macronucleus epigenetically controls genome rearrangement in the new macronucleus and provide the first demonstration of an RNAi-mediated process that directly alters DNA sequence organization. Methylation of histone H3 on lysine 9 and accumulation of chromodomain proteins, hallmarks of heterochromatin, also occur specifically on sequences undergoing elimination and are dependent on the small RNAs. These findings contribute to a new paradigm of chromatin biology: regulation of heterochromatin formation by RNAi-related mechanisms in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号