首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The review considers small nucleolar RNAs (snoRNAs), an abundant group of non-protein-coding RNAs. In association with proteins, snoRNAs determine the two most common nucleotide modifications in rRNA and some other cell RNAs: 2′-O-methylation of ribose and pseudouridylation. In addition, snoRNAs are involved in pre-mRNA cleavage and the telomerase function. Almost all snoRNAs fall into two families, C/D and H/ACA, distinguished by conserved sequence boxes. Although the proteins of C/D and H/ACA snoRNPs have homologous regions, these snoRNPs are assembled differently. The RNA components of RNases P and MRP are also classed with snoRNAs. Another problem considered is the structure and function of small RNAs from Cajal bodies (small organelles associated with the nucleoli), which are similar to snoRNAs.  相似文献   

2.
Conversion of uridines into pseudouridines (Psis) is the most frequent base modification in ribosomal RNAs (rRNAs). In eukaryotes, the pseudouridylation sites are specified by base-pairing with specific target sequences within H/ACA small nucleolar RNAs (snoRNAs). The yeast rRNAs harbor 44 Psis, but, when this work began, 15 Psis had completely unknown guide snoRNAs. This suggested that many snoRNAs remained to be discovered. To address this problem and further complete the snoRNA assignment to Psi sites, we identified the complete set of RNAs associated with the H/ACA snoRNP specific proteins Gar1p and Nhp2p by coupling TAP-tag purifications with genomic DNA microarrays experiments. Surprisingly, while we identified all the previously known H/ACA snoRNAs, we selected only three new snoRNAs. This suggested that most of the missing Psi guides were present in previously known snoRNAs but had been overlooked. We confirmed this hypothesis by systematically investigating the role of previously known, as well as of the newly identified snoRNAs, in specifying rRNA Psi sites and found all but one missing guide RNAs. During the completion of this work, another study, based on bioinformatic predictions, also reported the identification of most missing guide RNAs. Altogether, all Psi guides are now identified and we can tell that, in budding yeast, the 44 Psis are guided by 28 snoRNAs. Finally, aside from snR30, an atypical small RNA of heterogeneous length and at least one mRNA, all Gar1p and Nhp2p associated RNAs characterized by our work turned out to be snoRNAs involved in rRNA Psi specification.  相似文献   

3.
4.
核仁小RNA(small nucleolar RNA,snoRNA)是一类真核细胞核仁中的60~300个核苷酸长度的非编码RNA,主要参与rRNA和其它小RNA转录后的成熟加工过程. 它们与肿瘤的关系曾一度被人们所忽视,然而,近年来有关snoRNA新功能的研究证明,它们与肿瘤的发生、发展密切相关. snoRNA以多种方式参与肿瘤的发生:一些snoRNA(如:U50、SNORD12、SNORD12b、SNORD12c、SNORD44和h5sn2等)具有抑癌活性,而另一些snoRNA(如:SNORD33、SNORD66、SNORD76、SNORD112、SNORD113、SNORD114、SNORA42、U70C和ACA59B等)具有促癌活性. 另外,编码snoRNA基因的异常也被发现与肿瘤的发生有关. 因此,开展snoRNA与肿瘤关系的研究将有可能为肿瘤诊治提供新线索.  相似文献   

5.
Non-coding RNAs (ncRNAs) are important regulatory molecules involved in various physiological and cellular processes. Alterations of ncRNAs, particularly microRNAs, play crucial roles in tumorigenesis. Accumulating evidence indicates that small nucleolar RNAs (snoRNAs), another large class of small ncRNAs, are gaining prominence and more actively involved in carcinogenesis than previously thought. Some snoRNAs exhibit differential expression patterns in a variety of human cancers and demonstrate capability to affect cell transformation, tumorigenesis, and metastasis. We are beginning to comprehend the functional repercussions of snoRNAs in the development and progression of malignancy. In this review, we will describe current studies that have shed new light on the functions of snoRNAs in carcinogenesis and the potential applications for cancer diagnosis and therapy.  相似文献   

6.
Li W  Jiang G  Huang B  Jin Y 《IUBMB life》2005,57(3):173-179
Small nucleolar RNAs (snoRNAs) are a kind of noncoding RNAs, and the vast majority of snoRNAs are involved in site-specific modifications of rRNAs. A novel box C/D snoRNA called snoR124 was found inOryza sativa, and it can direct 2'-O-ribose methylation of spliceosomal small nuclear RNAs (snRNAs). The snoRNA has two antisense elements, and the results of primer extensions at different dNTP concentrations provide evidence that snoR124 guide 2'-O-methylations of the C76 residue in the U4 snRNA and the T91 residue in the U5 snRNA. In addition, this snoRNA is located in a snoRNA gene cluster with another 7 snoRNAs which are identified to direct ribose methylations in rRNAs. This is consistent with the opinion that the snoRNA gene organization in plant is mainly gene cluster. The snoR124 is the first example of a snoRNA that directs modifications of RNAs other than rRNAs in plant; it will avail to get more insights into the function of snoRNAs in plant.  相似文献   

7.
Small nucleolar RNAs (snoRNAs) play a significant role in Prader-Willi Syndrome (PWS) and Angelman Syndrome (AS), which are genomic disorders resulting from deletions in the human chromosomal region 15q11–q13. To identify snoRNAs in the region, our computational study employs key motif features of C/D box snoRNAs and introduces a complementary RNA–RNA hybridization test. We identify three previously unknown methylation guide snoRNAs targeting ribosomal 18S and 28S RNAs, and two snoRNAs targeting serotonin receptor 2C mRNA. We show that the three snoRNA candidates likely possess methylation strands complementary to, and form stable complexes with, human ribosomal RNAs. Our screen also identifies 8 other snoRNA candidates that do not pass the rRNA-complementarity and/or hybridization tests. Two of these candidates have extensive sequence similarity to HBII-52, a snoRNA that regulates the alternative splicing of serotonin receptor 2C mRNA. Six out of our eleven candidate snoRNAs are also predicted by other existing methods.  相似文献   

8.
9.
Small nucleolar RNAs (snoRNAs) are 50‐ to 300‐nt non‐coding RNAs that are involved in critical cellular events, including rRNA/snRNA modification and splicing, ribosome genesis, telomerase formulation and cell proliferation. The identification of snoRNAs in the pig, which is a widely consumed commercial organism that also has important functions in medicine and biology, will enrich the snoRNA kingdom and provide evolutionary clues about snoRNAs. In this study, we performed a systematic identification of snoRNAs in Sus scrofa and obtained 120 candidate snoRNAs, 65 of which were predicted via sequencing from our constructed cDNA library. The others were obtained by computational screening. The primary structural features examined included the sequence length, GC content, conservation of common box motifs and nucleotide diversity. The results indicate that the primary features of H/ACA box snoRNAs are opposite to those of C/D box snoRNAs. Subsequently, based on chromosomal location and host gene determination, we assigned 91 snoRNAs to nine genome organization modes. Gene duplications and translocations are considered to contribute to the high abundant organization in evolution. Functional information about our novel snoRNAs, such as putative targets, modification sites and guide sequences, was predicted by orthologue alignment. A comparative analysis of predicted targets and possible modified loci on U6 snRNA and 5.8S and 18S rRNAs among five species revealed that targets of snoRNA are conserved among species. Furthermore, we performed a quantitative analysis of six representative snoRNA genes in two pig breeds during different developmental stages. Interestingly, all six snoRNAs from one breed expressed in a similar pattern over the tested time points; however, these same six genes had different expression patterns in the other pig breed. Specifically, expression of all six snoRNAs declined significantly from 65 to 90 days post‐coitus (dpc) and then increased slightly during adulthood in Tongcheng pigs, whereas the expression of the same six genes increased slowly from 65 dpc until adulthood in Landrace pigs. This expression pattern suggests that most housekeeping, non‐coding RNAs from a single pig breed may be similarly expressed during development. Our study adds to the knowledge about the snoRNA family by providing the first genome‐wide study of porcine snoRNAs. The comparative analysis of snoRNAs from different pig breeds gave us evolutionary insight into the function of snoRNAs.  相似文献   

10.
Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants.  相似文献   

11.
12.
13.
Small nucleolar RNAs (snoRNAs) are a large family of eukaryotic RNAs that function within the nucleolus in the biogenesis of ribosomes. One major class of snoRNAs is the box C/D snoRNAs named for their conserved box C and box D sequence elements. We have investigated the involvement of cis-acting sequences and intranuclear structures in the localization of box C/D snoRNAs to the nucleolus by assaying the intranuclear distribution of fluorescently labeled U3, U8, and U14 snoRNAs injected into Xenopus oocyte nuclei. Analysis of an extensive panel of U3 RNA variants showed that the box C/D motif, comprised of box C', box D, and the 3' terminal stem of U3, is necessary and sufficient for the nucleolar localization of U3 snoRNA. Disruption of the elements of the box C/D motif of U8 and U14 snoRNAs also prevented nucleolar localization, indicating that all box C/D snoRNAs use a common nucleolar-targeting mechanism. Finally, we found that wild-type box C/D snoRNAs transiently associate with coiled bodies before they localize to nucleoli and that variant RNAs that lack an intact box C/D motif are detained within coiled bodies. These results suggest that coiled bodies play a role in the biogenesis and/or intranuclear transport of box C/D snoRNAs.  相似文献   

14.
Small nucleolar RNAs (snoRNAs) are an abundant class of non-protein-coding RNAs. In association with proteins they perform two most frequent nucleotide modifications in rRNAs and some other cellular RNAs: 2'-O-ribose methylation and pseudouridylation. SnoRNAs also participate in pre-rRNA cleavage and telomerase functions. Most snoRNAs fall into two families, box C/D and H/ACA, distinguished by the presence of conserved sequence boxes. Although C/D and H/ACA snoRNP proteins contain homologous regions, the assembly of these RNPs significantly differ. In addition, snoRNAs include the RNA component of RNAses P and MRP. The structure and function of small RNPs from Cajal bodies (small organelles associated with nucleoli) similar to snoRNP are also discussed.  相似文献   

15.
Box H/ACA snoRNAs represent an abundant group of small non-coding RNAs mainly involved in the pseudouridylation of rRNAs and/or snRNAs in eukaryotes and Archaea. In this study, we describe a novel experimental method for systematic identification of box H/ACA snoRNAs from eukaryotes. In the specialized cDNA libraries constructed by this method with total cellular RNAs from human blood cells, the high efficiency of cloning for diverse box H/ACA snoRNAs was achieved and seven novel species of this snoRNA family were identified from human for the first time. Furthermore, the novel method has been successfully applied for the identification of the box H/ACA snoRNAs from Drosophila and the fission yeast, demonstrating a powerful ability for systematic analysis of box H/ACA snoRNAs in a broad spectrum of eukaryotes.  相似文献   

16.
In eukaryotes, box H/ACA small nucleolar RNAs (snoRNAs) guide sites of pseudouridine (Psi) formation in rRNA. These snoRNAs reside in RNP complexes containing the putative Psi synthase, Cbf5p. In this study we have identified Cbf5p-associated RNAs in Euglena gracilis, an early diverging eukaryote, by immunoprecipitating Cbf5p-containing complexes from cellular extracts. We characterized one box H/ACA-like RNA which, however, does not appear to guide Psi formation in rRNA. We also identified four single Psi-guide box AGA RNAs. We determined target sites for these putative Psi-guide RNAs and confirmed that the predicted Psi modifications do, in fact, occur at these positions in Euglena rRNA. The Cbf5p-associated snoRNAs appear to be encoded by multicopy genes, some of which are clustered in the genome together with methylation-guide snoRNA genes. These modification-guide snoRNAs and snoRNA genes are the first ones to be reported in euglenid protists, the evolutionary sister group to the kinetoplastid protozoa. Unexpectedly, we also found and have partially characterized a selenocysteine tRNA homolog in the anti-Cbf5p-immunoprecipitated sample.  相似文献   

17.
18.
Small nucleolar RNAs (snoRNAs) are noncoding RNAs that direct 2′-O-methylation or pseudouridylation on ribosomal RNAs or spliceosomal small nuclear RNAs. These modifications are needed to modulate the activity of ribosomes and spliceosomes. A comprehensive repertoire of snoRNAs is needed to expand the knowledge of these modifications. The sequences corresponding to snoRNAs in 18–26-nt small RNA sequencing data have been rarely explored and remain as a hidden treasure for snoRNA annotation. Here, we showed the enrichment of small RNAs at Arabidopsis snoRNA termini and developed a computational approach to identify snoRNAs on the basis of this characteristic. The approach successfully uncovered the full-length sequences of 144 known Arabidopsis snoRNA genes, including some snoRNAs with improved 5′- or 3′-end annotation. In addition, we identified 27 and 17 candidates for novel box C/D and box H/ACA snoRNAs, respectively. Northern blot analysis and sequencing data from parallel analysis of RNA ends confirmed the expression and the termini of the newly predicted snoRNAs. Our study especially expanded on the current knowledge of box H/ACA snoRNAs and snoRNA species targeting snRNAs. In this study, we demonstrated that the use of small RNA sequencing data can increase the complexity and the accuracy of snoRNA annotation.  相似文献   

19.
Nucleolar localization signals of box H/ACA small nucleolar RNAs.   总被引:23,自引:0,他引:23       下载免费PDF全文
The two major families of small nucleolar RNAs (snoRNAs), Box C/D and Box H/ACA, are generated in the nucleoplasm and transported to the nucleolus where they function in rRNA processing and modification. We have investigated the sequences involved in the intranuclear transport of Box H/ACA snoRNAs by assaying the localization of injected fluorescent RNAs in Xenopus oocyte nuclear spreads. Our analysis of U17, U64 and U65 has revealed that disruption of either of the conserved sequence elements, Box H or Box ACA, eliminates nucleolar localization. In addition, the stem present at the base of the 3' hairpin is required for efficient nucleolar localization of U65. Fragments or rearrangements of U65 that consist of Box H and Box ACA flanking either the 5' or 3' hairpin are targeted to the nucleolus. The targeting is dependent on the presence of the Box sequences, but not on their orientation. Our results indicate that in each of the two major families of snoRNAs, a motif composed of the signature conserved sequences and an adjacent structural element that tethers the sequence elements directs the nucleolar localization of the RNAs. We demonstrate that telomerase RNA is also targeted to the nucleolus by a Box ACA-dependent mechanism.  相似文献   

20.
Evolution of small nucleolar RNAs in nematodes   总被引:10,自引:3,他引:7       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号