首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biogenesis, functions and fate of plant microRNAs   总被引:1,自引:0,他引:1  
  相似文献   

2.
龙茹  李玉花  徐启江 《生命科学》2007,19(2):127-131
microRNAs(miRNAs)是生物体内源长度约为20—23个核苷酸的非编码小RNA,通过与靶mRNA的互补配对而在转录后水平上对基因的表达进行负调控,导致mRNA的降解或翻译抑制。到目前为止,已报道有几千种miRNA存在于动物、植物、真菌等多细胞真核生物中,进化上高度保守。在植物和动物中,miRNA虽然都是通过与其靶基因的相互作用来调节基因表达,进而调控生物体的生长发育,但miRNA执行这种调控作用的机理却不尽相同。同时miRNA在动植物体内的形成过程也存在很多的不同之处。本文综述了动植物miRNA的生物合成、作用机理、生物功能等方面的研究进展。  相似文献   

3.
The fiber (in terms of plant biology) is an individual cells characterized by spindle shape, length of up to several centimeters, well developed cell wall, and mechanical function. The review summarizes different, sometimes contradictory view points about duration, segregation and mechanisms of realization of individual stages of fiber biogenesis. Initiation and coordinated and intrusive growth are considered, as well as formation of secondary cell wall, including its gelatinous layers, and senescence. Biogenesis of fibers ontogenetically related to various tissues has been analyzed and the data about marker stage-specific characters of these cells. The data summarized in this review willow not only deeper understanding the development of cells with such unique characters, but also interpret the growth mechanisms for much more cell types, in which it is more difficult to identify individual stages of biogenesis than in the sclerenchyme fibers.  相似文献   

4.
The fiber (in terms of plant biology) is an individual cell characterized by spindle shape, length of up to several centimeters, well developed cell wall, and mechanical function. The review summarizes different, sometimes contradictory view points about duration, segregation and mechanisms of realization of individual stages of fiber biogenesis. Initiation and coordinated and intrusive growth are considered, as well as formation of secondary cell wall, including its gelatinous layers, and senescence. Biogenesis of fibers ontogenetically related to various tissues has been analyzed and the data about marker stage-specific characters of these cells. The data summarized in this review will allow not only deeper understanding the development of cells with such unique characters, but also interpret the growth mechanisms for much more cell types, in which it is more difficult to identify individual stages of biogenesis than in the sclerenchyma fibers.  相似文献   

5.
Biogenesis and germline functions of piRNAs   总被引:7,自引:0,他引:7  
  相似文献   

6.
小RNA长度在20~32 nt之间,通过染色质修饰、mRNA降解和翻译抑制来调控基因表达。小RNA可以分为三类:小干扰RNA、微小RNA和piRNAs。小干扰RNA主要抵御转座子和病毒的侵袭。微小RNA的表达受发育水平调控且有组织特异性,在发育和细胞分化中起作用。piRNAs在生殖细胞和干细胞中表达,可使反转座子沉默。综述了这几种小RNA的定义与分类、生成机制、功能及其研究方法。  相似文献   

7.
Biogenesis, molecular regulation and function of plant isoprenoids   总被引:10,自引:0,他引:10  
Isoprenoids represent the oldest class of known low molecular-mass natural products synthesized by plants. Their biogenesis in plastids, mitochondria and the endoplasmic reticulum–cytosol proceed invariably from the C5 building blocks, isopentenyl diphosphate and/or dimethylallyl diphosphate according to complex and reiterated mechanisms. Compounds derived from the pathway exhibit a diverse spectrum of biological functions. This review centers on advances obtained in the field based on combined use of biochemical, molecular biology and genetic approaches. The function and evolutionary implications of this metabolism are discussed in relation with seminal informations gathered from distantly but related organisms.  相似文献   

8.
9.
10.
11.
12.
植物microRNA的生物合成和调控功能   总被引:1,自引:0,他引:1  
杨曦  何玉科 《生命科学》2010,(7):688-696
植物microRNA(miRNA)是一类21~24个核苷酸长度的小RNA分子。它的生物合成机制及其对植物生长发育的重要调控作用是人们普遍关注的科学问题和深入探索的研究对象。目前,RNA分子生物学在理论和技术上日趋完善,正在成为一门独立的新兴学科,对生物相关学科的发展产生了重要影响。其中,植物miRNA的生物合成和调控功能是植物小RNA分子生物学的核心问题之一。该文提供植物miRNA领域的最新研究成果,在此基础上对未来的学科发展提出新的建议。  相似文献   

13.
Glutathione transferases (GSTs) are ubiquitous, multifunctional proteins encoded by large gene families. In different plant species this gene family is comprised of 25–60 members, that can be grouped into six classes on the basis of sequence identity, gene organization and active site residues in the protein. The Phi and Tau classes are the most represented and are plant specific, while Zeta and Theta GSTs are found also in animals. Despite pronounced sequence and functional diversification, GSTs have maintained a highly conserved three-dimensional structure through evolution. Most GSTs are cytosolic and active as dimers, performing diverse catalytic as well as non-catalytic roles in detoxification of xenobiotics, prevention of oxidative damage and endogenous metabolism. Among their catalytic activities are the conjugation of electrophilic substrates to glutathione, glutathione-dependent isomerizations and reductions of toxic organic hydroperoxides. Their main non-catalytic role is as hormone and flavonoid ligandins. GST genes are predominantly organized in clusters non-randomly distributed in the genome. Phylogenetic studies indicate that plant GSTs have mainly evolved after the divergence of plants, the two prevalent Phi and Tau classes being the result of recent, multiple duplication events.  相似文献   

14.
microRNAs (miRNAs) are important noncoding small RNAs that regulate mRNAs in eukaryotes. However, under which circumstances different miRNAs/miRNA families exhibit different evolutionary trajectories in plants remains unclear. In this study, we sequenced the small RNAs and degradome from a basal eudicot, sacred lotus (Nelumbo nucifera or lotus), to identify miRNAs and their targets. Combining with public miRNAs, we predicted 57 pre‐eudicot miRNA families from different evolutionary stages. We found that miRNA families featuring older age, higher copy and target number tend to show lower propensity for miRNA family loss (PGL) and stronger signature of purifying selection during divergence of temperate and tropical lotus. Further analyses of lotus genome revealed that there is an association between loss of miRNA families in descendent plants and in duplicated genomes. Gene dosage balance is crucial in maintaining those preferentially retained MIRNA duplicates by imposing stronger purifying selection. However, these factors and selection influencing miRNA family evolution are not applicable to the putative MIRNA‐likes. Additionally, the MIRNAs participating in lotus pollen–pistil interaction, a conserved process in angiosperms, also have a strong signature of purifying selection. Functionally, sequence divergence in MIRNAs escalates expression divergence of their target genes between temperate and tropical lotus during rhizome and leaf growth. Overall, our study unravels several important factors and selection that determine the miRNA family distribution in plants and duplicated genomes, and provides evidence for functional impact of MIRNA sequence evolution.  相似文献   

15.
Biogenesis of oxalate in plant tissues   总被引:7,自引:1,他引:7       下载免费PDF全文
Chang CC  Beevers H 《Plant physiology》1968,43(11):1821-1828
Red beet root discs aerated in potassium phosphate for 2 to 3 days and young spinach leaves actively produce oxalate. A series of labeled compounds was supplied to each of these tissues to determine the extent of conversion to oxalate. Similar results were obtained with the 2 tissues except that in the leaf tissue glyoxylate and glycolate were outstandingly good precursors. Carbon from glucose, acetate, and particularly from some acids of the tricarboxylic acid cycle was recovered in oxalate. Extracts from both tissues were found to contain an enzyme which converts oxaloacetate to oxalate and acetate. The enzyme was partially purified and some of its properties are described. A pathway of oxalate synthesis which does not include glycolate or its oxidase is therefore proposed.  相似文献   

16.
17.
18.
19.
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that regulate gene expression in eukaryotic cells. The past decade has seen an explosion in our understanding of the sets of miRNA genes encoded in the genomes in different species of plants and the mechanisms by which miRNAs interact with target RNAs. A subset of miRNA families (and their binding sites in target RNAs) are conserved between angiosperms and basal plants, suggesting they predate the divergence of existing lineages of plants. However, the majority of miRNA families expressed by any given plant species have a narrow phylogenetic distribution. As a group, these "young" miRNAs genes appear to be evolutionarily fluid and lack clearly understood biological function. The goal of this review is to summarize our understanding of the sets of miRNA genes and miRNA targets that exist in various plant species and to discuss hypotheses that explain the patterns of conservation and divergence observed among microRNAs in plants.  相似文献   

20.
MicroRNAs的分子进化与调控机制   总被引:1,自引:0,他引:1  
MicroRNAs(miRNAs)是一类专门调控基因表达的非编码小分子RNA,广泛参与生物发育、细胞分化、细胞凋亡等多种生命进程。miRNAs在不同种系间独立进化且在进化演变中普遍保守。文章综述了miRNAs起源、进化上的保守性及甲基化调控方面研究进展,另外在疾病和动植物应用方面的研究也作了较为详细的阐述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号