首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
BackgroundMultiple myeloma is characterized by clonal proliferation of malignant plasma cells in the bone marrow that produce monoclonal immunoglobulins. N-glycosylation changes of these monoclonal immunoglobulins have been reported in multiple myeloma, but previous studies only detected limited serum N-glycan features.MethodsHere, a more detailed study of the human serum N-glycome of 91 multiple myeloma patients and 51 controls was performed. We additionally analyzed sequential samples from patients (n = 7) which were obtained at different time points during disease development as well as 16 paired blood serum and bone marrow plasma samples. N-glycans were enzymatically released and measured by mass spectrometry after linkage specific derivatization of sialic acids.ResultsA decrease in both α2,3- and α2,6-sialylation, galactosylation and an increase in fucosylation within complex-type N-glycans were found in multiple myeloma patients compared to controls, as well as a decrease in difucosylation of diantennary glycans. The observed glycosylation changes were present in all ISS stages, including the “low-risk” ISS I. In individual patients, difucosylation of diantennary glycans decreased with development of the disease. Protein N-glycosylation features from blood and bone marrow showed strong correlation. Moreover, associations of monoclonal immunoglobulin (M-protein) and albumin levels with glycan traits were discovered in multiple myeloma patients.Conclusions & general significanceIn conclusion, serum protein N-glycosylation analysis could successfully distinguish multiple myeloma from healthy controls. Further studies are needed to assess the potential roles of glycan trait changes and the associations of glycans with clinical parameters in multiple myeloma early detection and prognosis.  相似文献   

2.
3.
2-Deoxy-2-fluoro-D-galactose (dGalF), added to the medium of primary cultured rat hepatocytes, inhibited N-glycosylation of membrane (gp 120) and secretory glycoproteins (alpha 1-macroglobulin) in a concentration-dependent manner. Complete inhibition of N-glycosylation was achieved at concentrations of 1 mM and above. At identical concentrations, 2-deoxy-2-fluoro-D-glucose (dGlcF) caused only incomplete inhibition of N-glycosylation. dGalF reduced incorporation of D-[2,6-3H]mannose into lipid-linked oligosaccharides indicating interference with their assembly in the dolichol cycle.  相似文献   

4.
Chantret I  Moore SE 《Glycobiology》2008,18(3):210-224
During protein N-glycosylation in mammalian cells, free oligosaccharides(fOS) are generated from lipid-linked oligosaccharides by apyrophosphatase activity and oligosaccharyltransferase and frommisfolded glycoproteins by peptide:N-glycanase in both the ERand cytoplasm. Trafficking machinery comprising oligosaccharide-specificER and lysosomal transporters, an endo-β-N-acetyl-glucosaminidase,and the cytosolic M2C1 mannosidase drives a flux of fOS fromthe ER to cytoplasm and from the cytoplasm into lysosomes wherefOS are degraded. Transport of fOS out of the ER is normallyefficient and if inhibited causes fOS to be secreted via theGolgi apparatus. By contrast, fOS clearance from the cytosolinto lysosomes is less efficient resulting in low micromolarconcentrations of fOS in the cytoplasm. Structural analysisof cytosolic fOS reveals oligosaccharide families whose relativeabundance highlights the importance of different ER-associateddegradation (ERAD) pathways for misfolded glycoproteins andsuggests that in liver cells substantial amounts of glycoproteinsdestined for ERAD may transit early compartments of the Golgiapparatus. Glycoprotein quality control and ERAD are controlledby N-glycan/lectin interactions and the fOS trafficking pathwaywould seem to ensure that fOS do not interfere with these processeswhich occur in both the ER and cytoplasm. Although Saccharomycescerevisiae strains harbouring mutations in genes of the yeastfOS metabolic pathway do not display obvious phenotypes, mammalianfOS are quantitatively more important and the processes leadingto their regulation are more complex, raising the possibilitythat distinct phenotypes will be seen in mammalian cells oranimals in which fOS metabolism is modified.  相似文献   

5.
In recent years, plants have become an attractive alternative for the production of recombinant proteins. However, their inability to perform authentic mammalian N -glycosylation may cause limitations for the production of therapeutics. A major concern is the presence of β1,2-xylose and core α1,3-fucose residues on complex N -linked glycans, as these N -glycan epitopes are immunogenic in mammals. In our attempts towards the humanization of plant N -glycans, we have generated an Arabidopsis thaliana knockout line that synthesizes complex N -glycans lacking immunogenic xylose and fucose epitopes. Here, we report the expression of a monoclonal antibody in these glycan-engineered plants that carry a homogeneous mammalian-like complex N -glycan pattern without β1,2-xylose and core α1,3-fucose. Plant and Chinese hamster ovary (CHO)-derived immunoglobulins (IgGs) exhibited no differences in electrophoretic mobility and enzyme-linked immunosorbent specificity assays. Our results demonstrate the feasibility of a knockout strategy for N -glycan engineering of plants towards mammalian-like structures, thus providing a significant improvement in the use of plants as an expression platform.  相似文献   

6.
The U-box protein family in plants   总被引:15,自引:0,他引:15  
The U-box is a highly conserved domain recently identified at the C terminus of yeast UFD2, an E4 ubiquitination factor. In yeast, UFD2 is the only U-box-containing protein, but there are two UFD2 homologs and several other proteins containing a U-box domain in humans. Intriguingly, a database search revealed 37 predicted proteins containing a U-box in Arabidopsis. The plant U-box (PUB) proteins form five distinct subclasses, suggesting that they play diverse roles. The ARC1 gene from Brassica, required for self-incompatibility, is currently the only PUB gene functionally characterized. Here, we discuss the characteristics and possible functions of the PUB gene family.  相似文献   

7.
We have investigated the structure of glycans N-linked to the proteins of the moss Physcomitrella patens. The structural elucidation was carried out by western blotting using antibodies specific for N-glycan epitopes and by analysis of N-linked glycans enzymatically released from a total protein extract by combination of MALDI–TOF and MALDI–PSD mass spectrometry analysis. Nineteen N-linked oligosaccharides were characterised ranging from high-mannose-type and truncated paucimannosidic-type to complex-type N-glycans harbouring core-xylose, core-(1,3)-fucose and Lewisa, as previously described for proteins from higher plants. This demonstrates that the processing of N-linked glycans, as well as the specificity of glycosidases and glycosyltransferases involved in this processing, are highly conserved between P. patens and higher plants. As a consequence, P. patens appears to be a new promising model organism for the investigation of the biological significance of protein N-glycosylation in the plant kingdom, taking advantage of the potential for gene targeting in this moss.Abbreviations Asn asparagine - CID collision-induced dissociation - Glc glucose - GlcNAc N-acetylglucosamine - Man mannose - MALDI–TOF MS matrix-assisted laser desorption ionization–time of flight mass spectrometry - PNGase A peptide N-glycosidase A - PSD post-source decay  相似文献   

8.
Radio-labelled amphomycin (3H-amphomycin) forms a complex with dolichylmonophosphate in presence of Ca2+. Complex formation has also been documented with retinylmonophosphate and perhydromonoeneretinylmonophosphate. Analysis of the space-filling model suggested both fatty acylated aspartic acid residue at the N-terminus of the lipopeptide and phosphate head group of dolichylmonophosphate are necessary for the complex formation. The binding ability of amphomycin is then utilized to localize dolichylmonophosphate in the microsomal membrane. Studies with microsomal membranes from hen oviduct suggested that dolichylmonophosphate is located in the cytoplasmic side of the membrane.  相似文献   

9.
The glycosylation state of the glycosyl-phosphatidylinositol (GPI) anchored cellular prion protein (PrPC) can influence the formation of the disease form of the protein responsible for the neurodegenerative spongiform encephalopathies. We have investigated the role of membrane topology in the N-glycosylation of PrP by expressing a C-terminal transmembrane anchored form, PrP-CTM, an N-terminal transmembrane anchored form, PrP-NTM, a double-anchored form, PrP-DA, and a truncated form, PrPDeltaGPI, in human neuroblastoma SH-SY5Y cells. Wild-type PrP, PrP- CTM and PrP-DA were membrane anchored and present on the cell surface as glycosylated forms. In contrast, PrP-NTM, although membrane anchored and localized at the cell surface, was not N-glycosylated. PrPDeltaGPI was secreted from the cells into the medium in a hydrophilic form that was unglycosylated. The 4-fold slower rate at which PrPDeltaGPI was trafficked through the cell compared with wild-type PrP was due to the absence of the GPI anchor not the lack of N-glycans. Retention of PrPDeltaGPI in the endoplasmic reticulum did not lead to its glycosylation. These results indicate that C-terminal membrane anchorage is required for N-glycosylation of PrP.  相似文献   

10.
Trypanosoma cruzi epimastigotes (insect gut stage) incubated with [U-14C]glucose synthesized Man9GlcNAc2-P-P-dolichol as practically the sole dolichol-P-P derivative. On the other hand, amastigotes (intracellular stage) of the same parasite synthesized four to five times more Man7GlcNAc2-P-P-dolichol than Man9GlcNAc2-P-P-dolichol. Evidence is presented indicating that, whereas in epimastigotes only Man9GlcNAc2 was transferred to proteins, in amastigotes both Man7GlcNAc2 and Man9GlcNAc2 were transferred in direct proportion to their respective amounts bound to dolichol-P-P. The change in the mechanism of protein N-glycosylation could be observed upon in vitro differentiation of amastigotes to epimastigotes. The dissimilar size of the main oligosaccharides transferred to proteins in epimastigotes and amastigotes was responsible for differences in two structural features of high mannose-type oligosaccharides present in mature glycoproteins of both forms of the parasite, namely the average size of the compounds and the structure of the main species of some isomer oligosaccharides.  相似文献   

11.
beta-Adrenoreceptor stimulation of rat parotid acinar cells increases the activity of several microsomal membrane associated, dolichylmonophosphate (Dol-P) linked glycosyltransferases. The activities of Man-P-Dol synthase and Glc-P-Dol synthase are increased by approximately 50%, and the activity of N-acetylglucosaminyl 1-phosphate transferase plus N-acetylglucosaminyl transferase increased by approximately 60%, after agonist treatment. Increases in enzyme activity are (i) independent of endogenous Dol-P levels and (ii) observed under conditions in which the specific activities of donor sugar nucleotides are kept constant. Activation of these enzymes is specific since comparable levels of NADPH-cytochrome c reductase are found in control and agonist-treated membranes. The data thus provide the initial demonstration of neurotransmitter modulation of enzymes in the dolichol-linked pathway of protein N-glycosylation.  相似文献   

12.
N-Glycosylation, the most common and most versatile protein modification reaction, occurs at the beta-amide of the aspargine of the Asn-Xaa-Ser/Thr sequon. For reasons that are unclear, not all such sequons are glycosylated. To find patterns that affect glycosylation, we examined the amino acid residues from the 20th preceding the sequon to the 20th residue following it, using bioinformatics tools. A clean data set of annotated, experimentally verified, glycosylated and nonglycosylated sequons derived from 617 well-defined nonredundant N- and N-,O-glycoproteins listed in SWISS-PROT (June 2002) was used. NXS and NXT sequons were analyzed separately. Although no overt patterns were found to explain sequon occupancy or nonoccupancy, trends for over- or underrepresentation of certain amino acids at particular positions were statistically significant and different in NXS and NXT sequons. In extension of earlier reports, none of the 80 Asn-Pro-Ser/Thr found were glycosylated, and a markedly low level of glycosylation was seen in sequons with Pro at the position following the Ser/Thr. In addition, a general observation was made that the considerable number of glycosylated sequons in the C-terminal 10 residues of glycoproteins suggests that N-glycosylation in these cases may be posttranslational and not cotranslational, as widely accepted.  相似文献   

13.
Yeast and other fungal protein-expression hosts have been extensively used to produce industrial enzymes, and are often the expression system of choice when manufacturing costs are of primary concern. However, for the production of therapeutic glycoproteins intended for use in humans, yeast have been less useful owing to their inability to modify proteins with human glycosylation structures. Yeast N-glycosylation is of the high-mannose type, which confers a short half-life in vivo and thereby compromises the efficacy of most therapeutic glycoproteins. Several approaches to humanizing yeast N-glycosylation pathways have been attempted over the past decade with limited success. Recently however, advances in the glycoengineering of yeast and the expression of therapeutic glycoproteins with humanized N-glycosylation structures have shown significant promise - this review summarizes the most important developments in the field.  相似文献   

14.
15.
The effect of D-galactosamine on protein N-glycosylation was studied in rat hepatocyte primary cultures for alpha 1-antitrypsin (three complex type oligosaccharide chains) and alpha 1-acid glycoprotein (six complex type oligosaccharide chains). D-Galactosamine at a concentration of 4 mM inhibited partially de novo N-glycosylation leading to the formation of alpha 1-antitrypsin lacking one to two and of alpha 1-acid glycoprotein lacking one to five of its carbohydrate side chains. In addition D-galactosamine interfered with oligosaccharide processing, leading to the formation of some carbohydrate side chains remaining in an endoglucosaminidase H sensitive, i.e., not completely processed, form. D-Galactosamine impaired the secretion of alpha 1-antitrypsin and of alpha 1-acid glycoprotein but did not inhibit the secretion of the unglycosylated albumin. The inhibitory effect of D-galactosamine on de novo glycosylation as well as on oligosaccharide processing lasted for at least 24 h after it had been removed from the cells. D-Galactosamine impaired the glycosylation of alpha 1-antitrypsin only in hepatocytes, but not in human monocytes. Furthermore, D-galactosamine did not impair the N- and O-glycosylation of interleukin-6 in human monocytes and in MRC 5 fibroblasts. The results indicate that the effect of D-galactosamine on protein glycosylation is restricted to D-galactosamine metabolizing hepatocytes and is not exerted by the drug itself but by its metabolites.  相似文献   

16.
Protein N-glycosylation plays an important role in protein function. Yet, at present, few computational methods are available for the prediction of this protein modification. This prompted our development of a support vector machine (SVM)-based method for this task, as well as a partial least squares (PLS) regression based prediction method for comparison. A functional domain feature space was used to create SVM and PLS models, which achieved accuracies of 83.91% and 79.89%, respectively, as evaluated by a leave-one-out cross-validation. Subsequently, SVM and PLS models were developed based on functional domain and protein secretion information, which yielded accuracies of 89.13% and 86%, respectively. This analysis demonstrates that the protein functional domain and secretion information are both efficient predictors of N-glycosylation.  相似文献   

17.
The juvenile hormone binding protein (JHBP) from Galleria mellonella hemolymph is a glycoprotein composed of 225 amino acid residues. It contains four Cys residues forming two disulfide bridges. In this study, the topography of the disulfide bonds as well as the site of glycan attachment in the JHBP molecule from G. mellonella was determined, using electrospray mass spectrometry. The MS analysis was performed on tryptic digests of JHBP. Our results show that the disulfide bridges link Cys10 and Cys17, and Cys151 and Cys195. Of the two potential N-glycosylation sites in JHBP, Asn4, and Asn94, only Asn94 is glycosylated. This site of glycosylation is also found in the fully biologically active recombinant JHBP expressed in the yeast Pichia pastoris.  相似文献   

18.
Determining the exact nature of N-glycosylation in Caenorhabditis elegans, a nematode worm and genetic model organism, has proved to have been an unexpected challenge in recent years; a wide range of modifications of its N-linked oligosaccharides have been proposed on the basis of structural and genomic analysis. Particularly mass spectrometric studies by a number of groups, as well as the characterisation of recombinant enzymes, have highlighted those aspects of N-glycosylation that are conserved in animals, those which are seemingly unique to this species and those which are shared with parasitic nematodes. These data, of importance for therapeutic developments, are reviewed.  相似文献   

19.
Glycosylation has profound effects on the quality of recombinant proteins produced in mammalian cells. The biosynthetic pathways of N-linked glycans on glycoproteins involves a relatively small number of enzymes and nucleotide sugars. Many of these glycoconjugate enzymes can utilize multiple N-glycans as substrates, thus generating a large number of glycan intermediates, and making the biosynthetic pathway resemble a network with diverging and converging paths. The N-glycans on secreted glycoprotein molecules include not only terminal glycans, but also pathway intermediates. To better assess the glycan distribution and the potential route of their synthesis, we created GlycoVis, a visualization program that displays the distribution and the potential reaction paths leading to each N-glycan on the reaction network. The substrate specificities of the enzymes involved were organized into a relationship matrix. With the input of glycan distribution data, the program outputs a reaction pathway map which labels the relative abundance levels of different glycans with different colors. The program also traces all possible reaction paths leading to each glycan and identifies each pathway on the map. Glycoform distribution of Chinese Hamster Ovary cell-derived tissue plasminogen activator (TPA), and human and mouse IgG were used as illustrations for the application of GlycoVis. In addition, the intracellular and secreted IgG from an NS0 producer cell line were isolated, and their glycoform profiles were displayed using GlycoVis for comparison. This visualization tool facilitates the analysis of potential reaction paths utilized under different physiological or culture conditions, and may provide insight on the potential targets for metabolic engineering.  相似文献   

20.
The utility of green fluorescent protein in transgenic plants   总被引:30,自引:0,他引:30  
The green fluorescent protein (GFP) from the jellyfish Aequorea victoria has proven to be a powerful tool in plant genetic transformation studies. This paper reviews the history and the progression of the expression of GFP variants in transgenic plants. The distinguishing features of the most useful GFPs, such as those including the S65T chromophore mutation and those with dual excitation peaks, are discussed. The review also focuses on the utility of GFP as a visual selectable marker in aiding the plant transformation process; GFP has been more important in monocot transformation compared with dicot transformation. Finally, the potential utility of new fluorescent proteins is speculated upon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号