首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complementary DNA sequences were isolated from a library of cloned Arabidopsis leaf mRNA sequences in gt10 that encoded a 21.7 kDa polypeptide (CaBP-22), which shared 66% amino acid sequence identity with Arabidopsis calmodulin. The putative Ca2+-binding domains of CaBP-22 and calmodulin, however, were more conserved and shared 79% sequence identity. Ca2+ binding by CaBP-22, which was inferred from its amino acid sequence similarity with calmodulin, was demonstrated indirectly by Ca2+-induced mobility shifting of in vitro translated CaBP-22 during SDS-polyacrylamide gel electrophoresis. CaBP-22 is encoded by a ca. 0.9 kb mRNA that was detected by northern blotting of leaf poly(A)+ RNA; this mRNA was slightly larger than the 809 bp CaBP-22 cDNA insert, indicating that the deduced amino acid sequence of CaBP-22 is near full-length. CaBP-22 mRNA was detected in RNA fractions isolated from leaves of both soil-grown and hydroponically grown Arabidopsis, but below the limits of detection in RNA isolated from roots, and developing siliques. Thus, CaBP-22 represents a new member of the EF-hand family of Ca2+-binding proteins with no known animal homologue and may participate in transducing Ca2+ signals to a specific subset of response elements.  相似文献   

2.
Two cDNA clones, AATCDPK1 and cATCDPK2, encoding Ca2+-dependent, calmodulin-independent protein kinases (CDPK) were cloned from Arabidopsis thaliana and their nucleotide sequences were determined. Northern blot analysis indicated that the mRNAs corresponding to the ATCDPK1 and ATCDPK2 genes are rapidly induced by drought and high-salt stress but not by low-temperature stress or heat stress. Treatment of Arabidopsis plants with exogenous abscisic acid (ABA) had no effect on the induction of ATCDPK1 or ATCDPK2. These findings suggest that a change in the osmotic potential of the environment can serve as a trigger for the induction of ATCDPK1 and ATCDPK2. Putative proteins encoded by ATCDPK1 and ATCDPK2 which contain open reading frames of 1479 and 1488 bp, respectively, are designated ATCDPK1 and ATCDPK2 and show 52% identity at the amino acid sequence level. ATCDPK1 and ATCDPK2 exhibit significant similarity to a soybean CDPK (51 % and 73%, respectively). Both proteins contain a catalytic domain that is typical of serine/threonine protein kinases and a regulatory domain that is homologous to the Ca2+-binding sites of calmodulin. Genomic Southern blot analysis suggests the existence of a few additional genes that are related to ATCDPK1 and ATCDPK2 in the Arabidopsis genome. The ATCDPK2 protein expressed in Escherichia coli was found to phosphorylate casein and myelin basic protein preferentially, relative to a histone substrate, and required Ca2+ for activation.  相似文献   

3.
We isolated cDNA clones for novel protein kinases by expression screening of a cDNA library from the basidiomycetous mushroom Coprinus cinereus. One of the isolated clones was found to encode a calmodulin (CaM)-binding protein consisting of 488 amino acid residues with a predicted molecular weight of 53,906, which we designated CoPK12. The amino acid sequence of the catalytic domain of CoPK12 showed 46% identity with those of rat Ca2+/CaM-dependent protein kinase (CaMK) I and CaMKIV. However, a striking difference between these kinases is that the critical Thr residue in the activating phosphorylation site of CaMKI/IV is replaced by a Glu residue at the identical position in CoPK12. As predicted from its primary sequence, CoPK12 was found to behave like an activated form of CaMKI phosphorylated by an upstream CaMK kinase, indicating that CoPK12 is a unique CaMK with different properties from those of the well-characterized CaMKI, II, and IV. CoPK12 was abundantly expressed in actively growing mycelia and phosphorylated various proteins, including endogenous substrates, in the presence of Ca2+/CaM. Treatment of mycelia of C. cinereus with KN-93, which was found to inhibit CoPK12, resulted in a significant reduction in growth rate of mycelia. These results suggest that CoPK12 is a new type of multifunctional CaMK expressed in C. cinereus, and that it may play an important role in the mycelial growth.  相似文献   

4.
Calmodulin and the regulation of smooth muscle contraction   总被引:8,自引:0,他引:8  
Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.  相似文献   

5.
A multifunctional Ca2+/calmodulin dependent protein kinase was purified approximately 650 fold from cytosolic extract of Candida albicans. The purified preparation gave a single band of 69 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis with its native molecular mass of 71 kDa suggesting that the enzyme is monomeric. Its activity was dependent on calcium, calmodulin and ATP when measured at saturating histone IIs concentration. The purified Ca2+/CaMPK was found to be autophosphorylated at serine residue(s) in the presence of Ca2+/calmodulin and enzyme stimulation was strongly inhibited by W-7 (CaM antagonist) and KN-62 (Ca2+/CaM dependent PK inhibitor). These results confirm that the purified enzyme is Ca2+/CaM dependent protein kinase of Candida albicans. The enzyme phosphorylated a number of exogenous and endogenous substrates in a Ca2+/calmodulin dependent manner suggesting that the enzyme is a multifunctional Ca2+/calmodulin-dependent protein kinase of Candida albicans.  相似文献   

6.
Plant responses to high salt stress have been studied for several decades. However, the molecular mechanisms underlying these responses still elude us. In order to understand better the molecular mechanism related to NaCl stress in plants, we initiated the cloning of a large number of NaCl-induced genes in Arabidopsis. Here, we report the cloning of a cDNA encoding a novel Ca2+-binding protein, named AtCP1, which shares sequence similarities with calmodulins. AtCP1 exhibits, in particular, a high degree of amino acid sequence homology to the Ca2+-binding loops of the EF hands of calmodulin. However, unlike calmodulin, AtCP1 appears to have only three Ca2+-binding loops. We examined Ca2+ binding of the protein by a Ca2+-dependent electrophoretic mobility shift assay. A recombinant AtCP1 protein that was expressed in Escherichia coli did show a Ca2+-dependent electrophoretic mobility shift. To gain insight into the expression of the AtCP1 gene, northern blot analysis was carried out. The AtCP1 gene had a tissue-specific expression pattern: high levels of expression in flower and root tissues and nearly undetectable levels in leaves and siliques. Also, the expression of the AtCP1 gene was induced by NaCl treatment but not by ABA treatment. Finally, subcellular localization experiments using an AtCP1:smGFP fusion gene in soybean suspension culture cells and tobacco leaf protoplasts indicate that AtCP1 is most likely a cytosolic protein.  相似文献   

7.
From a pollen tube cDNA library ofPetunia inflata, we isolated cDNA clones encoding a protein, PPE1, which exhibits sequence similarity with plant, bacterial, and fungal pectin esterases. Genomic clones containing thePPE1 gene were isolated using cDNA for PPE1 as a probe, and comparison of the cDNA and genomic sequences revealed the presence of a single intron in thePPE1 gene. During pollen development,PPE1 mRNA was first detected in anthers containing uninucleate microspores; it reached the highest level in mature pollen and persisted at a high level inin vitro germinated pollen tubes. The observed expression pattern of thePPE1 gene suggests that its product may play a role in pollen germination and/or tube growth.  相似文献   

8.
A novel kinesin-like protein with a calmodulin-binding domain   总被引:4,自引:0,他引:4  
Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with 35S-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca2+-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCK1 is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca2+/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.  相似文献   

9.
The objective of this study was to examine whether S-RNase plays a specific role in the pre-germinated Pyrus pollen. Effects of exogenous RNase and endogenous S-RNase on concentration of cytosolic-free calcium ([Ca2+]i) variation of pre-germinated Pyrus pollen were studied. [Ca2+]i variation caused by different RNases were complex. In 1 h after being cultured, exogenous RNase, RNase T1 and RNase A, and endogenous incompatible ‘Hohsui’ RNase promoted the [Ca2+]i of ‘Hohsui’ pollen. Acid proteins of ‘Hohsui’ had no remarkable influence on the [Ca2+]i of self-pollen. Endogenous compatible ‘Kohsui’ RNase reduced the [Ca2+]i of ‘Hohsui’ pollen, but compatible ‘Hohsui’ RNase can stimulate the [Ca2+]i of ‘Kohsui’ pollen. RNase T1, RNase A and incompatible ‘Kohsui’ S-RNase can also make ‘Kohsui’ pollen [Ca2+]i increase. Different from ‘Hohsui’ pollen, acid proteins of ‘Hohsui’ pull down the ‘Kohsui’ pollen [Ca2+]i remarkably. Conclusion can be made that during the prophase of pollen germination, endogenous S-RNase has no specific effect on pollen [Ca2+]i changes.  相似文献   

10.
Dieter  P.  Cox  J. A.  Marmé  D. 《Planta》1985,166(2):216-218
The Ca2+-binding properties of calmodulin purified from zucchini (Cucurbita pepo L.) has been determined. A value of 3.3 mol Ca2+ per mol of zucchini calmodulin was measured at pH 7.5 by equilibrium chromatography. The far-and near-UV circular-dichroic spectra of the Ca2+-and Mg2+-saturated as well as from the metal-free forms of zucchini calmodulin reveal that upon Ca2+-binding the -helix content increases. A comparison with the spectra of vertebrate calmodulin indicates that both calmodulin have a similar secondary structure, similar Ca2+-induced conformational changes and the same number of Ca2+-binding sites.Abbreviations CAPP 10-(3-aminopropyl)-2-chloro-phenothiazine - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - EDTA ethylenediaminetetraacetic acid Dedicated to Prof. Dr. Karl Decker on the occasion of his 60th birthday  相似文献   

11.
A cDNA library was constructed from mRNA prepared from light-treated seedlings of Scots pine (Pinus sylvestris L.) and cDNAs for the chlorophyll a/b-binding protein LHC-II were identified using a pea gene as the heterologous probe. Three cDNA clones were sequenced. The deduced amino acid sequences of two of the genes corresponded to Type I and one to Type II LHC-II proteins which were ca. 90% homologous to their angiosperm counterparts. The transit peptides of the Scots pine preLHC-II showed features common to angiosperm transit peptides. The three cDNAs had a 70 to 75% preference for G+C in the third base position. CpG and GpC profiles and degenerate codon position bias suggested that two of the corresponding genes lie within CpG islands.  相似文献   

12.
Transient receptor potential (TRP) cation channels, which are conserved across mammals, flies, fish, sea squirts, worms, and fungi, essentially contribute to cellular Ca2+ signaling. The activity of the unique TRP channel in yeast, TRP yeast channel 1 (TRPY1), relies on the vacuolar and cytoplasmic Ca2+ concentration. However, the mechanism(s) of Ca2+-dependent regulation of TRPY1 and possible contribution(s) of Ca2+-binding proteins are yet not well understood. Our results demonstrate a Ca2+-dependent binding of yeast calmodulin (CaM) to TRPY1. TRPY1 activity was increased in the cmd1–6 yeast strain, carrying a non–Ca2+-binding CaM mutant, compared with the parent strain expressing wt CaM (Cmd1). Expression of Cmd1 in cmd1–6 yeast rescued the wt phenotype. In addition, in human embryonic kidney 293 cells, hypertonic shock-induced TRPY1-dependent Ca2+ influx and Ca2+ release were increased by the CaM antagonist ophiobolin A. We found that coexpression of mammalian CaM impeded the activity of TRPY1 by reinforcing effects of endogenous CaM. Finally, inhibition of TRPY1 by Ca2+–CaM required the cytoplasmic amino acid stretch E33–Y92. In summary, our results show that TRPY1 is under inhibitory control of Ca2+–CaM and that mammalian CaM can replace yeast CaM for this inhibition. These findings add TRPY1 to the innumerable cellular proteins, which include a variety of ion channels, that use CaM as a constitutive or dissociable Ca2+-sensing subunit, and contribute to a better understanding of the modulatory mechanisms of Ca2+–CaM.  相似文献   

13.
Summary The flow of calcium ions from the stigma to germinating pollen was studied by autoradiography in Primula officinalis (dry stigma) and Ruscus aculeatus (wet stigma). 45Ca2+ ions were observed to be taken up by the pistils from an agar medium and then transported intracellularly to both the stigmal cells and the stigmal exudate. The 45Ca2+ present in the stigma was taken up by the germinating pollen grains.  相似文献   

14.
DEAE-cellulose column chromatography of Neurospora crassa soluble mycelial extracts leads to the resolution of three major protein kinase activity peaks designated PKI, PKII, and PKIII.PKII activity is stimulated by Ca2+ and Neurospora or brain calmodulin. Maximal stimulation was observed at 2 µM-free Ca2+ and 1 µg/ml of the modulator. The stimulatory effect of the Ca2+-calmodulin complex was blocked by EGTA and by some calmodulin antagonists such as phenothiazine drugs or compound 48/80.PKII phosphorylates different proteins, among which histone II-A at a low concentration and CDPKS, the synthetic peptide specific for Ca2+-calmodulin dependent protein kinases, are the best substrates. Some phosphorylation can be detected in the absence of any exogenous acceptor. PKII activity assayed in the presence of histone II-A or in the absence of exogenous phosphate acceptor (autophosphorylation) co-elute in a DEAE-cellulose column at 0.28 M NaCl. As result of the autophosphorylation reaction of the purified enzyme a main phosphorylated component of 70 kDa was resolved by SDS-polyacrylamide gel electrophoresis. It is possible that this component is an active part of this enzyme.  相似文献   

15.
Summary Phosphorylation of ribosomal protein S6 of mammals precedes activation of cell growth in numerous biological systems. We have cloned a cDNA for ribosomal protein S6 from T-47D human breast cancer cells by immunoscreening a gt11 expression library with antibody raised against the mitochondrial Ca2+-binding ATPase inhibitor protein (CaBI) of bovine heart mitochondria (Yamada & Huzel: J Biol Chem 263: 11498–11503, 1988). Similar clones were obtained by the immunoscreening of a rat heart expression library. In agreement with others, the open reading frames of the cDNAs from the two species coded for the same amino acid sequence. No difference in S6 of the human neoplastic cells compared to that of non-neoplastic cells was found. However, common antigenic determinants in S6 and CaBI were indicated. Accordingly, S6 was purified from rat liver ribosomes and antiserum prepared. Immuno-dot blot and Western blot analyses showed high specific reactivity between S6, the cloned chimeric -galactosidase fusion protein from a cDNA clone, and CaBI with anti-S6 and anti-CaBI antibodies. The antibodies also showed a high degree of discrimination for S6 and CaBI. Neither interacted with the other ribosomal proteins nor with another ATPase inhibitor protein from bovine heart mitochondria. Neither interacted with the Ca2+-binding proteins, calmodulin, oncomodulin, Protein C, or Factor X. Prothrombin was weakly reactive with anti-CaBI but not with anti-S6. Thus, the results fulfill the specific criteria for the concept and operational definition of common protein epitopes in S6 and CaBI. However, neither prothrombin nor S6 fusion protein inhibited mitochondrial ATPase activity even at 20 times the concentrations at which CaBI gave 97% inhibition.Abbreviations CaBI the Ca2+-binding mitochondrial ATPase inhibitor protein - PMI the mitochondrial ATPase inhibitor protein of Pullman and Monroy [31]  相似文献   

16.
Three new, unique cDNA sequences encoding isoforms of calmodulin (CaM) were isolated from an Arabidopsis cDNA library cloned in gt10. These sequences (ACaM-4, -5, and -6) represent members of the Arabidopsis CaM gene family distinct from the three DNA sequences previously reported. ACaM-4 and -6 encode full-length copies of CaM mRNAs of ca. 0.75 kb. The ACaM-5 sequence encodes a partial length copy of CaM mRNA that is lacking sequences encoding the amino-terminal 10 amino acids of mature CaM and the initiator methionine. The derived amino acid sequence of ACaM-5 is identical to the sequences encoded by two of the previously characterized ACaM cDNAs, and is identical to TCH-1 mRNA, whose accumulation was increased by touch stimulation. The polypeptides encoded by ACaM-4 and -6 differ from that encoded by ACaM-5 by six and two amino acid substititions, respectively. Most of the deduced amino acid sequence substitutions in the Arabidopsis CaM isoforms occurred in the fourth Ca2+-binding domain. Polymerase chain reaction amplification assays of ACaM-4, -5 and -6 mRNA sequences indicated that each accumulated in Arabidopsis leaf RNA fractions, but only ACaM-4 and -5 mRNAs were detected in silique total RNA. The six different CaM cDNA sequences each hybridize with unique Eco RI restriction fragments in genomic Southern blots of Arabidopsis DNA, indicating that these sequences were derived from distinct structural genes. Our results suggest that CaM isoforms in Arabidopsis may have evolved to optimize the interaction of this Ca2+-receptor protein with specific subsets of response elements.  相似文献   

17.
Jingmei Zhang  Jiaxi Liu  Zukeng Chen  Jinxing Lin   《Flora》2007,202(7):581-588
The calcium inhibitors A23187, EGTA and La3+ inhibit pollen grain germination and growth of pollen tubes of Lilium davidii var. unicolor at different concentrations. Treatment with 10−4 or 10−5 M ionophores A23187 reduced germination rate and resulted in distortion of pollen tube. Addition of 2 or 10 mM of the chelator EGTA disturbed the direction of pollen tube growth and extended the diameter of pollen tube as observed by light and confocal microscopy. The Ca2+-channel blocker lanthanum chloride (La3+) restrained germination or markedly caused transformation of pollen tube. Furthermore, all treatments led to disappearance of any calcium gradient. Calcium distribution in pollen grain and pollen tube was altered as shown by confocal microscopy for each treatment. This indicates that the inhibitors influence pollen development by affecting the calcium gradient which may play a critical role in germination and tube growth. Fourier transform infrared (FTIR) spectra indicated slight increases in contents of amide I and a substantial decrease in the content of aliphatic esters and saturated esters in treated pollen tubes compared with normal pollen tubes. The FTIR analysis confirmed that EGTA and La3+ weakened the accumulation of ester in pollen tubes, which may be associated with an increased content of amide I.  相似文献   

18.
A technique is described which permits the in vivo study of protein synthesis and phosphorylation in the pollen of Brassica spp. during the early stages of the pollen-stigma interaction. In Brassica napus and B. oleracea, compatible pollination is followed by a dramatic activation of protein synthesis in the pollen involving the synthesis of approximately 40 proteins. After incompatible pollinations in B. oleracea, virtually no newly synthesised polypeptides were detected in the pollen except for a small group of high molecular weight proteins which were not normally synthesised during compatible pollinations. Both compatible and incompatible pollinations were followed by the appearance of newly phosphorylated proteins in the pollen; these fell into four distinct groups. In B. oleracea, the number of phosphorylated proteins and the degree of phosphorylation of individual proteins within the four groups differed between compatible and incompatible pollinations. One group of phosphorylated proteins appeared to correspond with the small group of high molecular weight polypeptides which were synthesised in pollen after incompatible pollinations. These findings are discussed in the perspective of cell signalling during the pollen-stigma interaction in Brassica and also in terms of their possible implication in sporophytic self-incompatibility.  相似文献   

19.
Cadmium inhibits plasma membrane calcium transport   总被引:6,自引:0,他引:6  
Summary The interaction of Cd2+ with the plasma membrane Ca2+-transporting ATPase of fish gills was studied. ATP-driven Ca2+-transport in basolateral membrane (BLM) vesicles was inhibited by Cd2+ with anI 50 value of 3.0nm at 0.25 m free Ca2+ using EGTA, HEEDTA and NTA to buffer Ca2+ and Cd2+ concentrations. The inhibition was competitive in nature since theK 0.5 value for Ca2+ increased linearly with increasing Cd2+ concentrations while theV max remained unchanged. The Ca2+ pump appeared to be calmodulin dependent, but we conclude that the inhibition by Cd2+ occurs directly on the Ca2+ binding site of the Ca2+-transporting ATPase and not via the Ca2+-binding sites of calmodulin. It is suggested that Cd2+-induced inhibition of Ca2+-transporting enzymes is the primary effect in the Cd2+ toxicity towards cells followed by several secondary effects due to a disturbed cellular Ca2+ metabolism. Our data illustrate that apparent stimulatory effects of low concentrations of Cd2+ on Ca2+-dependent enzymes may derive from increased free-Ca2+ levels when Cd2+ supersedes Ca2+ on the ligands.  相似文献   

20.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号