首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phlebotomine sand flies that transmit the protozoan parasite Leishmania differ greatly in their ability to support different parasite species or strains in the laboratory: while some show considerable selectivity, others are more permissive. In "selective" sand flies, Leishmania binding and survival in the fly midgut typically depends upon the abundant promastigote surface adhesin lipophosphoglycan (LPG), which exhibits species- and strain-specific modifications of the dominant phosphoglycan (PG) repeat units. For the "selective" fly Phlebotomus papatasi PpapJ, side chain galactosyl-modifications (scGal) of PG repeats play key roles in parasite binding. We probed the specificity and properties of this scGal-LPG PAMP (Pathogen Associated Molecular Pattern) through studies of natural isolates exhibiting a wide range of galactosylation patterns, and of a panel of isogenic L. major engineered to express similar scGal-LPG diversity by transfection of SCG-encoded β1,3-galactosyltransferases with different activities. Surprisingly, both 'poly-scGal' and 'null-scGal' lines survived poorly relative to PpapJ-sympatric L. major FV1 and other 'mono-scGal' lines. However, survival of all lines was equivalent in P. duboscqi, which naturally transmit L. major strains bearing 'null-scGal'-LPG PAMPs. We then asked whether scGal-LPG-mediated interactions were sufficient for PpapJ midgut survival by engineering Leishmania donovani, which normally express unsubstituted LPG, to express a 'PpapJ-optimal' scGal-LPG PAMP. Unexpectedly, these "L. major FV1-cloaked" L. donovani-SCG lines remained unable to survive within PpapJ flies. These studies establish that midgut survival of L. major in PpapJ flies is exquisitely sensitive to the scGal-LPG PAMP, requiring a specific 'mono-scGal' pattern. However, failure of 'mono-scGal' L. donovani-SCG lines to survive in selective PpapJ flies suggests a requirement for an additional, as yet unidentified L. major-specific parasite factor(s). The interplay of the LPG PAMP and additional factor(s) with sand fly midgut receptors may determine whether a given sand fly host is "selective" or "permissive", with important consequences to both disease transmission and the natural co-evolution of sand flies and Leishmania.  相似文献   

2.
3.
The morphology of Leishmania major parasites and their interactions with various regions of the alimentary canal of Phlebotomus papatasi were studied by scanning electron microscopy. Parasites were observed to undergo development initiated with the ingestion of amastigotes and culminating in a characteristic distribution of four distinct morphological forms in various parts of the alimentary canal: namely, large numbers of elongate nectomonads in the abdominal mid-gut, haptomonad forms attached to the cuticle of the stomodeal valve, small spherical forms attached to the esophagus and masses of short promastigotes, believed to be the infective forms, lying free in the anterior thoracic mid-gut and the esophagus.  相似文献   

4.
Cytoplasmic polyhedrosis viruses (CPV's) were observed in wild-caught and laboratory-reared Phlebotomus papatasi. Chronic CPV pathology of the midgut, characterized by structural aberrations in the epithelium and the peritrophic membrane, interfered with blood digestion and rendered the sand flies refractory to Leishmania major infections. Rates of natural and artificial L. major infections were inversely correlated to the incidence of CPV infections. The interaction between viruses and protozoan parasites in an insect host is of basic biological interest and in this case may be of significance in the epidemiology of cutaneous leishmaniasis.  相似文献   

5.
Leishmaniasis research needs a near-human model for investigations of natural infection processes, immunological responses and evaluation of treatments. Therefore, we developed a reproducible system using Leishmania major Yakimoff & Schokhor (Trypanosomatidae: Kinetoplastida), the cause of Old World zoonotic cutaneous leishmaniasis (ZCL), transmitted to rhesus monkeys Macaca mulatta (Zimmerman) (Primates: Cercopithecidae) by sandfly bites of experimentally infected Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae). Eight monkeys of presumed Indian origin (Leishmania naive) were exposed to bites of female sandflies that had been infected with L. major by membrane-feeding on human blood seeded with amastigotes isolated from hamster footpad lesions. Infection rates of membrane-fed sandflies averaged > 85% seven days after the infective feed, with uniformly high numbers of promastigotes in the stomodaeal valve region of the sandfly gut. Nodules and ulcerating dermal lesions developed on 7/8 monkeys 2-4 weeks post-bite and persisted for 3-7 months. Monkeys also developed satellite lesions beyond the area of sandfly bites on the head, but not on the chest. Three re-challenged monkeys developed lesions that healed faster than lesions from their primary challenges. After infection, monkeys developed delayed type hypersensitivity (DTH) responses to a panel of Leishmania skin test antigens (LSTA) and, when tested by ELISA and IFA, showed significant post-infection antibody titres which typically rose for approximately 170 days and then gradually receded during the next 100 days following the first challenge. After the second challenge, antibody titres spiked higher within approximately 50 days and receded more rapidly. In contrast, four rhesus macaques of Chinese origin developed no lesions following infected sandfly bites, although they raised antibodies and LSTA reactions, indicating subclinical infection.  相似文献   

6.
We tested if genetic exchange was observable between two strains of Leishmania major (Trypanosomatidae) during mixed infection of the sand fly Phlebotomus papatasi. Previous studies suggested that genetic exchange may occur in natural populations of Leishmania at a low frequency, but experimental crosses examining small numbers of progeny (<60) did not reveal hybrid parasites. Accordingly, a strategy was devised to increase the number of progeny that could be screened by 100-fold. Clonal derivatives from two strains that were infective to flies and contained numerous restriction fragment length polymorphisms were characterized and selected for resistance to methotrexate or tunicamycin by gene amplification. A successfully mixed infection of P. papatasi was obtained, and a method was developed for directly plating promastigotes from the gut contents of infected flies onto selective media. Twenty-five hundred independent progeny were scored for the presence of both drug resistance markers. No hybrid parasites were observed, indicating that the frequency of genetic exchange in this cross must be less than 4 times 10-4. The lines and methods established in this work may prove useful in future studies of the mechanism and frequency of gene exchange in Leishmania.  相似文献   

7.
The stage‐regulated HASPB and SHERP proteins of Leishmania major are predominantly expressed in cultured metacyclic parasites that are competent for macrophage uptake and survival. The role of these proteins in parasite development in the sand fly vector has not been explored, however. Here, we confirm that expression of HASPB is detected only in vector metacyclic stages, correlating with the expression of metacyclic‐specific lipophosphoglycan and providing the first definitive protein marker for this infective sand fly stage. Similarly, SHERP is expressed in vector metacyclics but is also detected at low levels in the preceding short promastigote stage. Using genetically modified parasites lacking or complemented for the LmcDNA16 locus on chromosome 23 that contains the HASP and SHERP genes, we further show that the presence of this locus is essential for parasite differentiation to the metacyclic stage in Phlebotomus papatasi. While wild‐type and complemented parasites transform normally in late‐stage infections, generating metacyclic promastigotes and colonizing the sand fly stomodeal valve, null parasites accumulate at the earlier elongated nectomonad stage of development within the abdominal and thoracic midgut of the sand fly. Complementation with HASPB or SHERP alone suggests that HASPB is the dominant effector molecule in this process.  相似文献   

8.
A massive and homogeneous amount of amastigote-like forms was detected in the stomodeal valve (SV) and the thoracic mid-gut (TMG) of Leishmania major-infected Phlebotomus papatasi, which received a second blood meal 13 to 21 days post-infection on healthy anaesthetized hamsters. After re-feeding, the infected sand flies were dissected out to examine the morphology of the parasite in SV, TMG and the abdominal mid-gut (AMG). Different promastigote forms were seen in the infected flies. Among these included typical promastigotes (nectomonads and haptomonads), paramastigotes, metacyclic promastigotes and, in some samples, the here-reported amastigote-like forms. The Leishmania amastigote-like forms were detected in the SV of sand flies with 14, 18 and 21 days of infection as well as in the TMG at 13 and 18 days post-infection. However, the amastigote-like forms were not detected in the AMG. Factors such as the acidic pH predominating the TMG and the SV, as well as the temperature of the ingested blood, among others, are suggested as contributing to the transformation of the typical promastigotes into the amastigote-like forms. The significance of this finding is discussed and the possible biological advantage for transmission of Leishmania is considered.  相似文献   

9.
Previous studies using immunostaining and light microscopy demonstrated expression of Leishmania major lipophosphoglycan (LPG) on parasites developing in the sandfly gut from 2 days post infection. By days 4 to 7 post infection, there appeared to be large amounts of parasite-free LPG deposited on/in the microvilli and epithelial cells lining the thoracic midgut, while forward migration of parasites and the morphological changes which accompany metacyclogenesis were associated with developmental modification of the LPG molecules. Studies presented here examine this process with much greater precision using electron microscopy and immunogold labeling techniques to study the different developmental forms (nectomonads, haptomonads, paramastigotes, and metacyclics) of promastigotes in the sandfly gut. Results obtained using LPG-specific monoclonal antibodies (WIC79.3, 45D3 and the metacyclic-specific 3F12) show (1) gold labeling over the cell surface, within the flagellar pocket, and extending along the entire length of the flagellum of electron-dense nectomonads observed in the abdominal and thoracic midgut regions on days 4 and 7 post infection, and of electron-lucid haptomonads in the foregut, (2) dense labeling around the flagellar tips, by which nectomonad forms bind to the midgut microvilli, but not on the microvilli themselves or within the epithelial cells lining the midgut, (3) significant metacyclic-specific (3F12) labeling on nectomonad forms in the lumen of the midgut and attached to the microvilli, and (4) dense labeling on the cell surface of electron-lucid paramastigotes in the esophagus and in the filamentous matrix surrounding paramastigote and metacyclic forms in the esophagus and pharynx. These results are discussed in the light of the proposed roles for LPG in parasite attachment to, and survival in, the sandfly gut.  相似文献   

10.
Systemic control uses the vertebrate hosts of zoonotic pathogens as “Trojan horses,” killing blood-feeding female vectors and short-circuiting host-to-vector pathogen transmission. Previous studies focused only on the effect of systemic control on vector abundance at small spatial scales. None were conducted at a spatial scale relevant for vector control and none on the effect of systemic control on pathogen transmission rates. We tested the application of systemic control, using Fipronil-impregnated rodent baits, in reducing Leishmania major (Kinetoplastida: Trypanosomatidae; Yakimoff & Schokhor, 1914) infection levels within the vector, Phlebotomus papatasi (Diptera: Psychodidae; Scopoli, 1786) population, at the town-scale. We provided Fipronil-impregnated food-baits to all Psammomys obesus (Mammalia:Muridae; Cretzschmar, 1828), the main L. major reservoir, burrows along the southern perimeter of the town of Yeruham, Israel, and compared sand fly abundance and infection levels with a non-treated control area. We found a significant and substantial treatment effect on L. major infection levels in the female sand fly population. Sand fly abundance was not affected. Our results demonstrate, for the first time, the potential of systemic control in reducing pathogen transmission rates at a large, epidemiologically relevant, spatial scale.  相似文献   

11.
Phlebotomus papatasi is a proven vector of Leishmania major which is one of the causative agents of cutaneous leishmaniasis in the Old World. Although it has a wide geographical range, its population structure is not yet well understood. In an effort to better understand the population dynamics of this vector, we developed a panel of di‐ and trinucleotide microsatellite markers, using a magnetic bead hybridization enrichment protocol. These microsatellite loci showed three to seven alleles with an expected heterozygosity range between 0.702 and 0.876. The level of polymorphisms found in this study suggests that these microsatellite loci can be used for population analysis of P. papatasi.  相似文献   

12.
Epidemiological field studies on leishmaniasis have been hampered by the laborious, and often inefficient, methods used to assess the rates of infection of sandfly vectors (Diptera; Phlebotominae) by species of the causative disease organisms, protozoal parasites of the genus Leishmania (Kinetoplastida; Trypanosomatidae). We report the rapid and accurate identification of both sandfly vector (Phlebotomus (Phlebotomus) papatasi (Scopoli] and infecting Leishmania major Yakimov & Schokov by DNA hybridizations to squash-blotted sandflies. Large numbers of whole (infected) sandflies can be quickly squashed on to nylon hybridization filters and (following standard procedures) the filter-bound DNA can be hybridized sequentially to cloned, multicopy genomic sequences that are specific for species of Leishmania (kinetoplast DNA) or for the sandfly (ribosomal (r) DNA). Our sandfly probe consists of a 3.2 kb fragment of the intergenic 'non-transcribed' spacer of rDNA of P. papatasi that we have detected only in this species: it is present in all six geographically isolated populations tested (from Tunisia through to India) but cannot be detected in the morphologically similar P. (Phlebotomus) duboscqi Neveu-Lemaire, the vector of Leishmania major south of the Sahara; it also cannot be detected in Phlebotomus species of the subgenera Larroussius and Paraphlebotomus that together with P. papatasi are the dominant man-biting sandflies in north African foci of zoonotic cutaneous leishmaniasis, where (as in many arid regions of western Asia) P. papatasi is believed to be the sole vector of L. major.  相似文献   

13.
We measured reproductive and population parameters of adult sand flies, Phlebotomus papatasi (Scopoli, 1786) (Diptera: Psychodidae), in environmental chambers maintained at temperatures of 15, 18, 20, 25, 28, and 32 degrees C. Based on cohorts of adults at each temperature regime, horizontal life tables were constructed using established laboratory colonies initiated from specimens collected in Sanliurfa Province, southeastern Anatolia, Turkey. The fecundity and longevity of the insects were both highly variable, depending on the temperature. At 15 degrees C, all of the cohort females died before laying eggs, so the construction of a life table for this temperature regime was not possible. Within a range of 18 to 32 degrees C, the longevity of adult P. papatasi increased as the temperature decreased; at 15 degrees C, the mean survival times of females and males were 19.04 +/- 6.94 days (9-35) and 17.84 +/- 7.11 days (9-33), respectively. While the highest number of eggs was found in the cohort at 28 degrees C (44.08 +/- 7.79), this was only 3.60 +/- 1.55 in the cohort at 32 degrees C and 2.8 +/- 0.9 in the cohort at 18 degrees C. This result showed that extreme temperatures negatively affect the fecundity of this species. The cohort reared at 28 degrees C exhibited the highest intrinsic rates of population increase (r(m)) for P. papatasi. The r(m) ranged from 0.098 at 28 degrees C to 0.007 at 18 degrees C. The cohort placed at 28 degrees C was found to be significantly different (P < 0.01) from the other cohorts producing the fewest progeny in terms of net reproductive rate, R(0), (15.87). The values for mean generation time (T) were estimated to vary from 36 days to 271 days depending on temperature. Principal Component Analysis (PCA) confirmed results from the previous studies that the cohort at 28 degrees C orientated and clustered as a distinct group along the first two PCs.  相似文献   

14.
Trypsin and chymotrypsin serine proteases are the main digestive proteases in Diptera midguts and are also involved in many aspects of the vector-parasite relationship. In sand flies, these proteases have been shown to be a potential barrier to Leishmania growth and development within the midgut. Here we describe the sequence and partial characterization of six Phlebotomus papatasi midgut serine proteases: two chymotrypsin-like (Ppchym1 and Ppchym2) and four trypsin-like (Pptryp1-Pptryp4). All six enzymes show structural features typical to each type, including the histidine, aspartic acid, and serine (H/D/S) catalytic triad, six conserved cysteine residues, and other amino acid residues involved in substrate specificity. They also show a high degree of homology (40-60% identical residues) with their counterparts from other insect vectors, such as Anopheles gambiae and Aedes aegypti. The mRNA expression profiles of these six proteases vary considerably: two trypsin-like proteases (Pptryp1 and Pptryp2) are downregulated and one (Pptryp4) upregulated upon blood feeding. The two chymotrypsin-like enzymes display expression behavior similar to that of the early and late trypsins from Ae. aegypti.  相似文献   

15.
Abstract In arid areas, Phlebotomus papatasi obtains essential carbohydrates by feeding on green tissues of plants. There is a great variation in sugar content, metabolic rates and dark respiration between conspecific plants, and also between branches and leaves of the same plant. It is hypothesized that high nocturnal release of CO2 may guide the sand flies to rich sugar sources. Comparisons of Ph. papatasi feeding on branches of different plant species demonstrate a significant positive correlation between the level of sugar in leaves, the rate of sand fly feeding on them and the size of ingested sugar meals. Mean nocturnal CO2 emanation of low‐sugar Ricinus communis branches is 26.5 ppm and that of sugar rich branches is 86.3 ppm above room level. Low‐sugar Capparis spinosa branches release 45.0 ppm and the emission from sugar rich branches is 76.0 ppm above room level. Branches with similar emissions, placed behind net partitions, are used in no‐choice orientation experiments: R. communis branches releasing high CO2 levels are approached by 53.7% of the flies compared with 3.0% of flies that orientate to low CO2 branches. Capparis spinosa with high CO2 emission are approached by 9.8% of the flies compared with 0.95% of flies that orientate to low CO2 branches.  相似文献   

16.
Abstract Multi‐locus microsatellite typing (MLMT) has been employed to infer the population structure of Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) sandflies and assign individuals to populations. Phlebotomus papatasi sandflies were collected from 35 sites in 15 countries. A total of 188 P. papatasi individuals were typed using five microsatellite loci, resulting in 113 different genotypes. Unique microsatellite signatures were observed for some of the populations analysed. Comparable results were obtained when the data were analysed with Bayesian model and distance‐based methods. Bayesian statistic‐based analyses split the dataset into two distinct genetic clusters, A and B, with further substructuring within each. Population A consisted of five subpopulations representing large numbers of alleles that were correlated with the geographical origins of the sandflies. Cluster B comprised individuals collected in the Middle East and the northern Mediterranean area. The subpopulations B1 and B2 did not, however, show any further correlation to geographical origin. The genetic differentiation between subpopulations was supported by F statistics showing statistically significant (Bonferroni‐corrected P < 0.005) values of 0.221 between B2 and B1 and 0.816 between A5 and A4. Identification of the genetic structure of P. papatasi populations is important for understanding the patterns of dispersal of this species and to developing strategies for sandfly control.  相似文献   

17.
18.
Feeding of Phlebotomus papatasi Scopoli on nectar and honeydew was investigated in Neot Hakikar, an oasis in the southern Jordan Valley. Sand flies were caught with miniature light traps in cleared areas with large Tamarix nilotica Bunge bushes, in colonies of the sandrat Psammomys obesus Cretzschmar. Fly series were trapped and compared according to the condition of T. nilotica bushes: with flowers, soiled with honeydew excreted by cicadas, or without flowers. Near flowering bushes the catch was five times greater (7.9: 1.6 flies/trap) and the proportion of sugar-positive flies was also much greater (49.9:17.3%) than near bushes without flowers. The catch was three times greater (6.6:2.2 flies/trap) near cicada- infested than near uninfested bushes. Color markers within the gut, obtained from infested or uninfested bushes that had been sprayed with food dye, indicated feeding of 33.2% and 4.5% of these series, respectively. Sand flies were strongly attracted to flowers of T. nilotica. In similar trap series, those baited with flowering branches caught 231 flies, whereas with baits of honeydew- soiled branches, control regular branches or wet filter paper, the catch ranged between 11 to 15 flies. This study is the first evidence of nectar feeding by sand flies in the field and it indicates that nectar may be an important and an attractive source of sugar.  相似文献   

19.
The sugar diet and life-span of Phlebotomus papatasi were studied in a typical zoonotic focus of Leishmania major in an arid area of the Jordan Valley during 1996-1997. Plant-tissue residues (cellulose particles) were identified in the stained guts of 23% of P. papatasi and significant amounts of sugar were found in the gut of 16%. Feeding on different plants was demonstrated by using their branches, suffused with cellulose stain, as baits in the field. Ingested, stained cellulose was detected in 10% of the sandflies (6% of males, 12.5% of females) caught near bait-branches of common local plants, mostly Chenopodiaceae. The similar rates of plant and sugar feeding, with the observed absence of aphids (ruling out the availability of honeydew), implied that the sugar meals of sandflies were obtained directly from plants. The relative paucity of sugar meals in P. papatasi coincided with a short life-span, evaluated by daily growth lines in the cuticle. The age of the oldest females was estimated to be 8 days, and 6 days for males. Under local conditions, the first gonotrophic cycle can be completed in 6 days and the usual transmission of L. major is apparently afterwards, when females ingest blood to initiate another cycle. Only about 9% of P. papatasi females survived > 6 days.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号