首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic locus and primary structure of the human immunodeficiency virus (HIV) protease was determined by comparing the data of protein analyses with the published data of the gene analysis. The complete sequence of HIV-1 and HIV-2 protease was synthesized by solid-phase peptide synthesis. The synthetic protease was capable of accurately cleaving synthetic peptide substrates corresponding to known cleavage sites in gag polyproteins of HIV-1, HIV-2, and murine leukemia virus. The chemical synthesis of protease confirms the DNA sequence and provides a means of rapidly producing active protease in substantial quantities for biochemical and physical studies.  相似文献   

2.
The advantages of the organism Dictyostelium discoideum as an expression host for recombinant glycoproteins have been exploited for the production of an isotopically labeled cell surface protein for NMR structure studies. Growth medium containing [15N]NH4Cl and [13C]glycerol was used to generate isotopically labeled Escherichia coli, which was subsequently introduced to D. discoideum cells in simple Mes buffer. A variety of growth conditions were screened to establish minimal amounts of nitrogen and carbon metabolites for a cost-effective protocol. Following single-step purification by anion-exchange chromatography, 8 mg of uniformly 13C,15N-labeled protein secreted by approximately 1010D. discoideum cells was isolated from 3.3 liters of supernatant. Mass spectrometry showed the recombinant protein of 16 kDa to have incorporated greater than 99.9% isotopic label. The two-dimensional 1H-13C HSQC spectrum confirms 13C labeling of both glycan and amino acid residues of the glycoprotein. All heteronuclear NMR spectra showed a good dispersion of cross-peaks essential for high-quality structure determination.  相似文献   

3.
    
Summary Human immunodeficiency virus-1 protease, produced by total chemical synthesis with the cysteine residues replaced by L--amino-n-butyric acid ([Aba67,95] HIV-1 PR), has been used extensively for the X-ray crystallographic structural analysis of the enzyme and its complexes utilized in drug design. Here we report kinetic studies on the synthetic enzyme. The pH optimum is 5.5 at ionic strengths of 0.1 and 1.0. The acid pH optimum is due to a decrease in binding affinity at higher pH values rather than to a reduction in catalytic efficiency. Activity is markedly increased by high ionic strength, although the major effect is on Km and not Kcat. The effect of pH and ionic strength on the kinetic constants determined for substrates and inhibitors is demonstrated and attention is drawn to the need for assay conditions to be explicitly reported in studies on inhibitor activity. The effect of a number of inhibitors has been measured against the synthetic enzyme and a recombinant HIV-1 PR. This work shows that [Aba67,95] HIV-1 PR has full enzymatic activity and normal kinetic properties.  相似文献   

4.
The apoflavodoxin protein from Azotobacter vinelandii harboring three tryptophan (Trp) residues, was biosynthetically labeled with 5-fluorotryptophan (5-FTrp). 5-FTrp has the advantage that chemical differences in its microenvironment can be sensitively visualized via 19F NMR. Moreover, it shows simpler fluorescence decay kinetics. The occurrence of FRET was earlier observed via the fluorescence anisotropy decay of WT apoflavodoxin and the anisotropy decay parameters are in excellent agreement with distances between and relative orientations of all Trp residues. The anisotropy decay in 5-FTrp apoflavodoxin demonstrates that the distances and orientations are identical for this protein. This work demonstrates the added value of replacing Trp by 5-FTrp to study structural features of proteins via 19F NMR and fluorescence spectroscopy.  相似文献   

5.
J Schneider  S B Kent 《Cell》1988,54(3):363-368
A protein corresponding to the putative protease of the human immunodeficiency virus 1 (HIV-1) has been prepared by total chemical synthesis. This 99 residue synthetic enzyme showed specific proteolytic activity on fragments of the natural gag precursor and on synthetic peptide substrates, two of which released fragments corresponding to the N terminus and C terminus of the protease molecule itself. The observed substrate specificity was not restricted to cleavage at Phe/Tyr-Pro bonds. Inhibition studies provided direct evidence that the HIV-1 protease belongs to the family of aspartic proteases. The availability of the HIV-1 protease as a defined molecular species has important implications for the design of specific inhibitors that do not interfere with the host cell metabolism as a possible route to antiviral agents against acquired immunodeficiency syndrome (AIDS).  相似文献   

6.
The analysis of primary and secondary nitrogen metabolism in plants by nuclear magnetic resonance (NMR) spectroscopy is comprehensively reviewed. NMR is a versatile analytical tool, and the combined use of 1H, 2H, 13C, 14N and 15N NMR allows detailed investigation of the acquisition, assimilation and metabolism of nitrogen. The analysis of tissue extracts can be complemented by the in vivo NMR analysis of functioning tissues and cell suspensions, and by the application of solid state NMR techniques. Moreover stable isotope labelling with 2H-, 13C- and 15N-labelled precursors provides direct insight into specific pathways, with the option of both time-course and steady state analysis increasing the potential value of the approach. The scope of the NMR method, and its contribution to studies of plant nitrogen metabolism, are illustrated with a wide range of examples. These include studies of the GS/GOGAT pathway of ammonium assimilation, investigations of the metabolism of glutamate, glycine and other amino acids, and applications to tropane alkaloid metabolism. The continuing development of the NMR technique, together with potential applications in the emerging fields of metabolomics and metabolic flux analysis, leads to the conclusion that NMR will play an increasingly valuable role in the analysis of plant nitrogen metabolism.  相似文献   

7.
Facile synthetic methods of 2′,5′-dideoxy-, 2′,3′-dideoxy- and 3′-deoxy-1,N 6-ethenoadenosine nucleosides by either an enzymatic dideoxyribosyl transfer reaction or a simple chemical reaction were proposed. The synthetic products were isolated and purified by preparative HPLC and their structures were confirmed by1H NMR (500 MHz) and FAB-MS including high resolution mass measurement. These modified nucleoside analogs have not been reported yet. Therefore, these modified nucleoside analogs are of potential value to be studied further for biological activity such as anticancer or antiviral.  相似文献   

8.
The use of 13C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically 13C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for 13Cε1 nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from 15N backbone relaxation measurements. Compared to measurements of backbone nuclei, 13Cε1 dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the 13Cε1 dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a critical enzyme involved in infection. It catalyzes two reactions to integrate the viral cDNA into the host genome, 3′ processing and strand transfer, but the dynamic behavior of the active site during catalysis of these two processes remains poorly characterized. NMR spectroscopy can reveal important structural details about enzyme mechanisms, but to date the IN catalytic core domain has proven resistant to such an analysis. Here, we present the first NMR studies of a soluble variant of the catalytic core domain. The NMR chemical shifts are found to corroborate structures observed in crystals, and confirm prior studies suggesting that the α4 helix extends toward the active site. We also observe a dramatic improvement in NMR spectra with increasing MgCl2 concentration. This improvement suggests a structural transition not only near the active site residues but also throughout the entire molecule as IN binds Mg2+. In particular, the stability of the core domain is linked to the conformation of its C-terminal helix, which has implications for relative domain orientation in the full-length enzyme. 15N relaxation experiments further show that, although conformationally flexible, the catalytic loop of IN is not fully disordered in the absence of DNA. Indeed, automated chemical shift-based modeling of the active site loop reveals several stable clusters that show striking similarity to a recent crystal structure of prototype foamy virus IN bound to DNA.  相似文献   

10.
Ueno D  Ma JF  Iwashita T  Zhao FJ  McGrath SP 《Planta》2005,221(6):928-936
Thlaspi caerulescens (Ganges ecotype) is a known Cd hyperaccumulator, however, the ligands which coordinate to Cd ions in the leaves have not been identified. In the present study, the chemical form of Cd was investigated by using 113Cd-nuclear magnetic resonance (NMR) spectroscopy. Plants were grown hydroponically with a highly enriched 113Cd stable isotope. Measurements of 113Cd-NMR with intact leaves showed a signal at the chemical shift of around –16 ppm. Crude leaf sap also gave a similar chemical shift. Purification by gel filtration (Sephadex G-10), followed by cationic and anionic exchange chromatography, showed that Cd occurred only in the anionic fraction, which gave the same chemical shift as intact leaves. Further purification of the anionic fraction, combined with 113Cd- and 1H-NMR studies, revealed that only the fraction containing malate showed a chemical shift similar to the intact leaves. These results indicate that Cd was coordinated mainly with malate in the leaves of T. caerulescens. The malate concentration in the leaves was not affected by increasing Cd concentration in the solution, suggesting that malate synthesis is not induced by Cd. Because the Cd-malate complex is relatively weak, we suggest that the complex forms inside the vacuoles as a result of an efficient tonoplast transport of Cd and a constitutively high concentration of malate in the vacuoles, and that the formation of the Cd-malate complex may lead to a decrease of subsequent Cd efflux to the cytoplasm.  相似文献   

11.
Onconase® FL-G zymogen is a 120 residue protein produced by circular permutation of the native Onconase® sequence. In this construction, the wild type N- and C-termini are linked by a 16 residue segment and new N- and C-termini are generated at wild type positions R73 and S72. This novel segment linking the native N- and C-termini is designed to obstruct Onconase’s® active site and encloses a cleavage site for the HIV-1 protease. As a first step towards the resolution of its 3D structure and the study of its structure–function relationships, we report here the nearly complete NMR 1H, 13C and 15N resonance chemical shift assignments at pH 5.2 and 35°C (BMRB deposit no 17973). The results presented here clearly show that the structure of the wild type Onconase® is conserved in the FL-G zymogen.  相似文献   

12.
An arginine specific protease, Sp-protease, was purified by column chromatography from freeze-dried Spirulina platensis using a five-step process. Purified Sp-protease has a molecular weight of 80 kDa. It hydrolyzed the synthetic substrates containing arginine residue in the P1 position but did not hydrolyze synthetic substrates containing other amino acid residues, including lysine residue in the P1 position. Among the synthetic substrates tested, a substrate of plasminogen activator (Pyr-Gly-Arg-MCA) was hydrolyzed most effectively with the enzyme (Km = 5.5 × 10−6 M), and fibrin gel was solubilized via activation of intrinsic plasminogen to plasmin with the enzyme. Activity was inhibited completely with camostat mesilate (Ki = 1.1 × 10−8 M) and leupeptin (Ki = 3.9 × 10−8 M) but was not inhibited with Nα-tosyl-L-lysine chloromethyl ketone (TLCK). The optimum pH of the enzyme has a range of pH 9.0 to pH 11.0. The optimum temperature was 50°C; the enzyme was stable at 0–50°C.  相似文献   

13.
Summary 15N NMR relaxation times in perdeuterated HIV-1 protease, complexed with the sub-nanomolar inhibitor DMP323, have been measured at 600 and 360 MHz 1H frequency. The relative magnitudes of the principal components of the inertia tensor, calculated from the X-ray coordinates of the protein-drug complex, are 1.0:0.85:0.44. The relation between the T1/T2 ratios observed for the individual backbone amides and their N-H orientation within the 3D structure of the protease dimer yields a rotational diffusion tensor oriented nearly collinear to the inertia tensor. The relative magnitudes of its principal components (1.00:1.11:1.42) are also in good agreement with hydrodynamic modeling results. The orientation and magnitude of the diffusion tensors derived from relaxation data obtained at 360 and 600 MHz are nearly identical. The anisotropic nature of the rotational diffusion has little influence on the order parameters derived from the 15N T1 and T2 relaxation times; however, if anisotropy is ignored, this can result in erroneous identification of either exchange broadening or internal motions on a nanosecond time scale. The average ratio of the T1 values measured at 360 and 600 MHz is 0.50±0.015, which is slightly larger than the value of 0.466 expected for an isotropic rigid rotor with c = 10.7 ns. The average ratio of the T2 values measured at 360 and 600 MHz is 1.14±0.04, which is also slightly larger than the expected ratio of 1.11. This magnetic field dependence of the T1 and T2 relaxation times suggests that the spectral density contribution from fast internal motions is not negligible, and that the chemical shift anisotropy of peptide backbone amides, on average, is larger than the 160 ppm value commonly used in 15N relaxation studies of proteins.  相似文献   

14.
17O---NMR measurements of labeled Pro-Leu-Gly-NH2 were carried out at different pH levels and in mixed solvents of water/acetonitrile. Complementary studies of the amide protons were carried out in acetonitrile-d3. Only the prolyl C = 17O group was sensitive to the pH level. Protonation of the amine group resulted in an upfield chemical shift of 18 ppm. The chemical shifts of each of the three oxygen sites was sensitive to the ratio water: acetonitrile. Solvent composition dependence of the chemical shift and linewidth suggests that the prolyl C = 17O is involved in intramolecular hydrogen bond formation when Pro-Leu-Gly-NH2 is dissolved in acetonitrile, while in water there is no intramolecular H bond.  相似文献   

15.
16.
A TROSY-based triple-resonance pulse scheme is described which correlates backbone 1H and 15N chemical shifts of an amino acid residue with the 15N chemical shifts of both the sequentially preceding and following residues. The sequence employs 1 J NC and 2 J NC couplings in two sequential magnetization transfer steps in an `out-and-back' manner. As a result, N,N connectivities are obtained irrespective of whether the neighbouring amide nitrogens are protonated or not, which makes the experiment suitable for the assignment of proline resonances. Two different three-dimensional variants of the pulse sequence are presented which differ in sensitivity and resolution to be achieved in one of the nitrogen dimensions. The new method is demonstrated with two uniformly 2H/13C/15N-labelled proteins in the 30-kDa range.  相似文献   

17.
C, N CP MAS and high resolution multinuclear NMR study of methyl

Four new derivatives of methyl

were studied by 1H, 13C, 15N NMR in CDCl3 solutions and by 13C, 15N NMR in the solid state. The replacement of one aryl substituent by another has no influence on the proton and carbon chemical shifts within the sugar moiety, in solution. The differences in 13C chemical shifts Δ = δliquid - δsolid are significant for C-3 (deshielding of -3.4 to -3.8 ppm), C-5 and OMe but not observed for C-2, where the ureido substituent is linked, thus indicating that this fragment of the structure is rigid. The values of Δ in 15N chemical shifts of N-3′ are -2.3 to -2.8 ppm (increase of shielding in the solids); the effect of replacement of substituent at aromatic ring is larger than the contribution of intermolecular H-bond interaction. The values of 15.5–16.1 Hz for 1JC-1′-N and 21.2–21.5 Hz for 1JCO-N indicate that the two C---N-3′ bonds are of significant double bond character.  相似文献   

18.
Abstract

A new method is presented for the synthesis of oligonucleotides containing 15N-enriched 5- fluorocytosine (FC). Due to the reduced pK of FC, the amino protons of an unpaired FC residue may be observed at lower values of solution pH. The labeled FC residue has been placed as a template base at a model DNA replication fork. The amino protons of the FC residue have been identified in isotope-edited NMR spectra. Data is presented for a template FC residue unpaired, paired with guanine, and mispaired with adenine. These studies demonstrate the utility of labeled FC in examining unusual DNA structures.  相似文献   

19.
High resolution 13C NMR combined with chemical analysis were used to study the formation of metabolites from [1-13C]-labelled glucose by the salt-tolerant yeast Debaryomyces hansenii after transfer to media containing 8% NaCl. Time course spectroscopy of an aerobic cell suspension showed [1,3-13C]glycerol as the predominant end product. Perchloric acid extracts revealed additional less prominent incorporation of label into arabinitol, trehalose, glutamic acid, and alanine. The incorporation into trehalose and arabinitol showed a transient increase after shift to the high salinity medium. It is concluded that glycerol and arabinitol are the major organic solutes in D. hansenii, the production of glycerol being strongly induced by high salinity. Analysis of labelled extracts of D. hansenii after transfer to 8% NaCl media containing [1-13C]- or [6-13C]glucose, demonstrated that glucose is dissimilated via a combination of the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway, with the former playing a major role in glycerol formation and the latter in arabinitol production. The almost exclusive labelling of C5 of arabinitol from [6-13C]glucose indicates that the pathway to arabinitol proceeds via reduction of ribulose-5-phosphate.Abbreviations used NMR nuclear magnetic resonance - EMP Emden-Meyerhof-Parnas - PP pentose phosphate - GAP glyceraldehyde phosphate - DHAP dihydroxyacetone phosphate - ppm parts per million  相似文献   

20.
Vpr, one of the accessory gene products encoded by HIV-1, is a 96-residue protein with a number of functions, including targeting of the viral pre-integration complex to the nucleus and inducing growth arrest of dividing cells. We have characterized by 2D NMR the solution conformations of bioactive synthetic peptide fragments of Vpr encompassing a pair of H(F/S)RIG sequence motifs (residues 71–75 and 78–82 of HIV-1 Vpr) that cause cell membrane permeabilization and death in yeast and mammalian cells. Due to limited solubility of the peptides in water, their structures were studied in aqueous trifluoroethanol. Peptide Vpr59–86 (residues 59–86 of Vpr) formed an α-helix encompassing residues 60–77, with a kink in the vicinity of residue 62. The first of the repeated sequence motifs (HFRIG) participated in the well-defined α-helical domain whereas the second (HSRIG) lay outside the helical domain and formed a reverse turn followed by a less ordered region. On the other hand, peptides Vpr71–82 and Vpr71–96, in which the sequence motifs were located at the N-terminus, were largely unstructured under similar conditions, as judged by their CαH chemical shifts. Thus, the HFRIG and HSRIG motifs adopt α-helical and turn structures, respectively, when preceded by a helical structure, but are largely unstructured in isolation. The implications of these findings for interpretation of the structure–function relationships of synthetic peptides containing these motifs are discussed. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号