首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of the disulphide bonds in human platelet glycocalicin   总被引:1,自引:0,他引:1  
The glycoprotein Ib/IX complex on platelets is responsible for the first stage of haemostasis as an essential component in the primary adhesion of platelets to damaged vessel walls. Glycocalicin is the extracellular part of platelet glycoprotein Ib alpha and contains the von Willebrand factor and thrombin binding sites. Disulphide bonds are implicated in the von Willebrand binding site and studies with peptides point towards a region of glycocalicin with four cysteines as containing the binding sites for both von Willebrand factor and thrombin. The position and linkage of these two disulphide bonds are now determined to be 209-248 and 211-264 and the relevance of this double-loop structure for glycoprotein Ib/IX function is discussed.  相似文献   

2.
Human factor VIII/von Willebrand factor protein containing 120 +/- 12 nmol of sialic acid and 135 +/- 13 nmol of galactose/mg of protein was digested with neuraminidase. The affinity of native factor VIII/von Willebrand factor and its asialo form for the hepatic lectin that specifically binds asialoglycoproteins was assessed from in vitro binding experiments. Native factor VIII/von Willebrand factor exhibited negligible affinity while binding of the asialo derivative was comparable to that observed for asialo-alpha1-acid glycoprotein. Incubation of asialo-factor VIII/von Willebrand factor with Streptococcus pneumoniae beta-galactosidase removed only 62% of the galactose but abolished binding to the purified hepatic lectin. When the asialo derivative was incubated with purified beta-D-galactoside alpha2 leads to 6 sialyltransferase and CMP-[14C]NeuAc, only 61% of the galactose incorporated [14C]NeuAc. From the known specificites of these enzymes, it is concluded that galactose residues important in lectin binding are present in a terminal Gal/beta1 leads to 4GlcNAc sequence on asialo-factor VIII/von Willebrand factor. The relative ristocetin-induced platelet aggregating activity of native, asialo-, and agalacto-factor VIII/von Willebrand factor was 100:38:12, respectively, while procoagulant activity was 100:100:103.  相似文献   

3.
Blood coagulation factor VIII is a large glycoprotein that circulates in plasma at relative low concentration (0.1 microgram/ml). It consists of a heterogeneous mixture of a series heavy-chain peptides (90-200 kDa), each associated with a light chain of 80 kDa. To gain insight into the physical properties of the protein, we have characterized purified human factor VIII by electron microscopy and rotary shadowing. Electron microscopy of rotary shadowed factor VIII molecules showed predominantly a single globular domain structure, with a somewhat asymmetric shape, while two-domain structures were also encountered. The overall dimensions of the globular domains ranged from 4 x 6 nm to 8 x 12 nm. EDTA treatment of factor VIII reduced the overall dimensions (2.5 x 5 nm to 6 x 10 nm) while treatment with thrombin reduced the dimensions to a small extent. In complexes with von Willebrand factor, factor VIII appeared localized at the globular domains of von Willebrand factor multimers. In addition, incubation of factor VIII with Staphylococcus aureus V8 protease fragments SpII and SpIII revealed only binding to the globular domains of SpIII. In this study, the first morphological characterization of human factor VIII is presented, together with its direct localization on von Willebrand factor multimers.  相似文献   

4.
Human platelet glycoprotein Ib (GP Ib) is a major integral membrane protein that has been identified as the platelet-binding site mediating the factor VIII/von Willebrand-factor-dependent adhesion of platelets to vascular subendothelium. Recent evidence suggests that GP Ib is normally complexed with another platelet membrane protein, GP IX. In this study, human platelet plasma membranes were selectively solubilized with a buffer containing 0.1% (v/v) Triton X-100. The GP Ib complex (GP Ib plus GP IX) was purified to homogeneity in approximately 30% yield by immunoaffinity chromatography of the membrane extract using the anti-(glycoprotein Ib complex) murine monoclonal antibody, WM 23, coupled to agarose. GP Ib and GP IX were subsequently isolated as purified components by immunoaffinity chromatography of the GP Ib complex using a second anti-(glycoprotein Ib complex) monoclonal antibody, FMC 25, coupled to agarose. As assessed by dodecyl sulphate/polyacrylamide gel electrophoresis, purified GP Ib was identical to the molecule on intact platelets and had an apparent relative molecular mass of 170 000 under nonreducing conditions and 135 000 (alpha subunit) and 25 000 (beta subunit) under reducing conditions. GP IX had an apparent Mr of 22 000 under both nonreducing and reducing conditions. Purified Gb Ib complex and GP Ib inhibited the ristocetin-mediated, human factor VIII/von Willebrand-factor-dependent and bovine factor VIII/von Willebrand-factor-dependent agglutination of washed human platelets suggesting the proteins had been isolated in functionally active form. GP Ib alpha had a similar amino acid composition to that previously reported for its proteolytic degradation product, glycocalicin. The amino acid compositions of GP Ib beta and GP IX were similar but showed marked differences in the levels of glutamic acid, alanine, histidine and arginine. The N-termini of GP Ib alpha and GP IX were blocked; GP Ib beta had the N-terminal sequence, Ile-Pro-Ala-Pro-. On crossed immunoelectrophoresis, both GP Ib and GP IX were found to occur in the same immunoprecipitin arc(s) whether the platelets had been solubilized in the absence or presence of the calcium-dependent protease inhibitor, leupeptin. Binding studies in platelet-rich plasma indicated a similar number of binding sites (means +/- SD) for three anti-(glycoprotein Ib complex) monoclonal antibodies: AN 51, epitope on GP Ib alpha (22 000 +/- 2700, n = 3), WM 23, epitope on GP Ib alpha (21 000 +/- 3400, n = 3), FMC 25, epitope on GP IX (20 100 +/- 2700, n = 3), and FMC 25 (Fab')2 (27 100 +/- 800, n = 2).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The low level of enzymatic activity of certain alpha 2-macroglobulin-proteinase complexes could be important to the function of factor VIII/von Willebrand glycoprotein since it is especially sensitive to proteolytic cleavage. To test this possibility, complexes of alpha 2-macroglobulin with plasmin, trypsin, and thrombin were formed in at least a 2:1 molar ratio of alpha 2-macroglobulin:proteinase and tested for effects on the factor VIII procoagulant activity of the factor VIII/von Willebrand glycoprotein. Neither the alpha 2-macroglobulin-trypsin complex nor the alpha 2-macroglobulin-plasmin complex affected factor VIII procoagulant activity. The behavior of the alpha 2-macroglobulin-thrombin complex was different. When alpha 2-macroglobulin and thrombin were incubated in a mole ratio of 3:1 or less, factor VIII procoagulant activity was enhanced to about the same extent as with free thrombin. Even at a 24:1 mole ratio, the mixture could produce 45% of the increase in factor VIII activity obtained with free thrombin. The isolated alpha 2-macroglobulin-thrombin complex could also activate the factor VIII procoagulant function to about 45% of the level obtained with an identical amount of uncomplexed thrombin. Analysis of the alpha 2-macroglobulin-125I-labeled thrombin complexes by rechromatography or by polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated that this activation was not due to free thrombin. We conclude that the alpha 2-macroglobulin-thrombin complex retains sufficient proteolytic activity to activate the procoagulant function of factor VIII/von Willebrand glycoprotein despite the latter being a very large substrate, having an estimated molecular weight of 1-20 million.  相似文献   

6.
The glycoprotein Ib (GPIb), a two-chain integral platelet membrane protein, acts as a receptor for von Willebrand factor. In order to obtain information on the domain involved in this function, as well as on the structural organization of GPIb, the protein has been purified and submitted to limited proteolysis using three different enzymes. The resulting fragments were topographically oriented by means of partial NH2-terminal sequence analysis and immunological identification using monoclonal antibodies. One of these antibodies (LJ-Ib1) inhibited the von Willebrand factor-GPIb interaction completely, one (LJ-P3) partially, and one (LJ-Ib10) had no inhibitory effect. Three distinct fragments, the 38-kDa fragment produced by Serratia marcescens protease as well as the 45- and 35-kDa fragments produced by trypsin, had the same NH2 terminus as the intact GPIb alpha-chain (apparent molecular mass = 140 kDa). These fragments and the alpha-chain reacted with the inhibitory antibodies. On the other hand, three fragments produced by Staphylococcus aureus V8 protease, one of 92 kDa similar to the previously described "macroglycopeptide" and two others of 52 and 45 kDa, had NH2-terminal sequences different from that of the GPIb alpha-chain and reacted only with the noninhibitor monoclonal antibody LJIb10. Thus, the binding domain for von Willebrand factor resides near the NH2 terminus of the GPIb alpha-chain, whereas the carbohydrate-rich region is part of the innermost portion of GPIb and does not appear to be involved in the von Willebrand factor binding function.  相似文献   

7.
Von Willebrand factor (vWf) is the major component of the circulating factor VIII complex. The von Willebrand molecule includes factor VIII related antigen (VIIIR: Ag) which represents the molecular substrate of the von Willebrand activity expressed as Ristocetin cofactor (VIIIR:RCoF) activity. Several methods have been developed for VIIIR: Ag evaluation, among the first being the rocket-immunoelectrophoresis method of LAURELL. Radial immunodiffusion (MANCINI's method) was also used. Subsequently, radioimmunological assays, either as radioimmunoassay (RIA) or immunoradiometric assay (IRMA), were developed with improvements in sensitivity, so that levels of VIIIR: Ag lower than 0.1% of normal can be detected. More recently, an enzyme-linked immunosorbent assay (ELISA), characterized by the use of enzyme-conjugated antibody was proposed. This method shows a sensitivity similar to immunoradiometric methods but without using any dangerous reagent. Finally, a nephelometric method was proposed for factor VIII antigen evaluation. For a qualitative evaluation of von Willebrand factor crossed-immunoelectrophoresis and multimeric analysis can be used. In the first case, the use of precipiting antibodies against von Willebrand factor may demonstrate a peak with different characteristics related to the biochemical property of von Willebrand. Multimeric analysis in SDS-agarose gel electrophoresis followed by staining with labelled antifactor VIII antibodies gives information about different polymeric forms of circulating VIII/vW factor. Von Willebrand factor activity, expressed as its ability to induce platelet aggregation in the presence of the antibiotic Ristocetin, can be carried out using normal formalin fixed platelets, either with aggregometer or visual methods (glass slide test or tubes test and microtritation plate). The corrected evaluation of factor VIII complex by all these techniques together with the clotting activity assay allows a satisfactory study of factor VIII properties.  相似文献   

8.
The reactivity of endothelial cells to putative endothelial cell-specific markers varies with species, with vessel size and with the organ studied. To determine their value in studies of fetal rat lung, and whether organ immaturity would also influence reactivity, we studied endothelial cell immunoreactivity to antibodies against Factor VIII/von Willebrand factor (VIII/vWF), and binding reactivity to Bandeiraea (Griffonia) simplicifolia 1 lectin (BSL 1) during rat fetal lung development. Using an indirect immunofluorescent technique to detect Factor VIII/von Willebrand factor (VIII/vWF), endothelial cells lining the aortic arches were identified as early as day 11 of gestation (term = 22 days), prior to lung development. Immunoreactivity to VIII/vWF was subsequently localized to intrapulmonary endothelial cells and was not dependent on vessel size. In contrast, binding reactivity of FITC-conjugated BSL 1 was observed to both endothelial cells and to the basement membrane of developing airways, thus limiting its value as endothelial cell marker. During very early lung development solitary angioblasts could not be identified by reactivity to either VIII/vWF antibodies or to BSL 1, and neither marker appears to be of value for studies of early angiogenic events.  相似文献   

9.
Factor VIII and von Willebrand factor are two plasma proteins essential for effective hemostasis. In vivo, they form a non-covalent complex whose association appears to be metal ion dependent. However, a precise definition of the nature of the molecular forces governing their association remains to be defined, as does their binding affinity. In this paper we have determined the dissociation constant and stoichiometry for Factor VIII binding to immobilized von Willebrand factor. The data demonstrate that these proteins interact saturably and with relatively high affinity. Computer assisted analyses of the Scatchard data favour a two site binding model. The higher affinity site was found to have a Kd of 62 (+/- 13) x 10(-12) M while that of the lower affinity site was 380 (+/- 92) x 10(-12) M. The density of Factor VIII binding sites (Bmax) present on von Willebrand factor was 31 (+/- 3) pM for the high affinity binding site and 46 (+/- 6) pM for the lower site, corresponding to a calculated Factor VIII: von Willebrand factor binding ratio of 1:33 and 1:23, respectively.  相似文献   

10.
von Willebrand factor binds specifically to sulfated glycolipids   总被引:5,自引:0,他引:5  
The human plasma glycoprotein Factor VIII/von Willebrand factor (vWF) binds specifically and with high affinity to sulfatides (galactosylceramide-I3-sulfate). vWF does not bind to gangliosides, neutral glycolipids, phospholipids, or cholesterol 3-sulfate. Although the largest oligomers of vWF bind preferentially to sulfatides, vWF monomers and dimers also bind but with reduced affinity. vWF binding is inhibited at high ionic strength or low pH, by some sulfated polysaccharides and by antibodies to vWF. Binding of vWF to sulfatides is probably responsible for its agglutination of aldehyde-fixed erythrocytes and may play a role in vWF-induced platelet adhesion or platelet aggregation.  相似文献   

11.
The binding of 35S-labeled recombinant human Factor VIII to activated human platelets was studied in the presence and absence of exogenous plasma von Willebrand factor. In the absence of added von Willebrand Factor, platelets bound 210 molecules of Factor VIII/platelet when the unbound Factor VIII concentration was 2.0 nM (Kd = 2.9 nM). As the von Willebrand factor concentration was increased, the number of Factor VIII molecules bound/platelet decreased to 10 molecules of Factor VIII bound/platelet at 24 micrograms/ml of added vWF. Addition of an anti-vWF monoclonal antibody that inhibits the vWF-Factor VIII interaction attenuated the ability of vWF to inhibit binding of Factor VIII to platelets. In contrast, addition of a control anti-vWF antibody that does not block the vWF-Factor VIII interaction did not affect the ability of vWF to inhibit Factor VIII binding to platelets. From the vWF concentration dependence of inhibition of Factor VIII-platelet binding, a dissociation constant for the Factor VIII-vWF interaction was calculated (Kd = 0.44 nM). To further elucidate the role that vWF may play in preventing the interaction of Factor VIII with platelets, the platelet binding properties of a Factor VIII deletion mutant (90-73) which lacks the primary vWF-binding site was studied. The binding of this mutant was unaffected by added exogenous vWF. These observations demonstrate that Factor VIII can interact with platelets in a manner independent of vWF but that excess vWF in plasma can effectively compete with platelets for the binding of Factor VIII. In addition, since cleavage of Factor VIII by thrombin separates a vWF-binding domain from Factor VIIIa, we propose that activation of Factor VIII by thrombin may elicit release of activated Factor VIII from vWF and thereby make it fully available for platelet binding.  相似文献   

12.
Subendothelial collagen plays an important role, via both direct and indirect mechanisms, in the initiation of thrombus formation at sites of vascular injury. Collagen binds plasma von Willebrand factor, which mediates platelet recruitment to collagen under high shear. Subsequently, the direct binding of the platelet receptors glycoprotein VI and alpha2beta1 to collagen is critical for platelet activation and stable adhesion. Leeches, have evolved a number of inhibitors directed towards platelet-collagen interactions so as to prevent hemostasis in the host during hematophagy. In this article, we describe the molecular mechanisms underlying the ability of the leech product saratin to inhibit platelet binding to collagen. In the presence of inhibitors of ADP and thromboxane A2, both saratin and 6F1, a blocking alpha2beta1 mAb, abrogated platelet adhesion to fibrillar and soluble collagen. Additionally, saratin eliminated alpha2beta1-dependent platelet adhesion to soluble collagen in the presence of an Src kinase inhibitor. Moreover, saratin prevented platelet-rich plasma adhesion to fibrillar collagen, a process dependent upon both alpha2beta1 and von Willebrand factor binding to collagen. Furthermore, saratin specifically inhibited the binding of the alpha2 integrin subunit I domain to collagen, and prevented platelet adhesion to collagen under flow to the same extent as observed in the presence of a combination of mAbs to glycoprotein Ib and alpha2beta1. These results demonstrate that saratin interferes with integrin alpha2beta1 binding to collagen in addition to inhibiting von Willebrand factor-collagen binding, presumably by binding to an overlapping epitope on collagen. This has significant implications for the use of saratin as a tool to inhibit platelet-collagen interactions.  相似文献   

13.
A murine monoclonal antibody (IgG1k, Kd approximately 10(-8) M) specific for an epitope located on the heavy chain of human factor IXa was used to study structure-function relationships of factor IX. The antibody inhibited factor IX clotting activity but did not impair activation of factor IX either by factor XIa/calcium or by factor VIIa/tissue factor/calcium. The antibody also did not impair the binding of factor IXa to antithrombin III. Moreover, the antibody did not prevent calcium and phospholipid (PL) from inhibiting the binding of factor IXa to antithrombin III. The antibody also failed to impair activation of factor VII by factor IXa/calcium/PL. Furthermore, the antibody did not interfere with the very slow activation of factor X by factor IXa/calcium/PL. In contrast, the antibody did interfere with factor X activation when reaction mixtures also contained factor VIII:Ca/von Willebrand factor. The marked acceleration of factor X activation observed in control mixtures was not observed in mixtures containing the antibody. Similar results were obtained in reaction mixtures containing the Fab portion of the antibody and factor VIII:Ca free of von Willebrand factor. In additional experiments, factor VIII:Ca/von Willebrand factor was found to inhibit the binding of the antibody to 125I-factor IXa as determined using an immunosorbent assay. Moreover, the antibody displaced factor VIII:Ca from the factor X activator complex (IXa/calcium/PL/VIII:Ca) as evidenced by an altered elution pattern on gel filtration chromatography. From these observations, we conclude that the antibody impairs the clotting activity of factor IXa through interference with its binding of factor VIII:Ca. This suggests a significant role for the heavy chain (residues of 181-415) of factor IXa in binding factor VIII:Ca.  相似文献   

14.
The proteolytic activation of highly purified, heterodimeric porcine factor VIII and factor VIII-von Willebrand factor complex by thrombin was compared at I 0.17, pH 7.0, 22 degrees C. During the activation of factor VIII, heavy-chain cleavage is necessary to activate the procoagulant function, whereas light-chain cleavage is required to dissociate factor VIII from von Willebrand factor. The kinetics of activation of free factor VIII and factor VIII-von Willebrand factor complex were identical. The steady-state kinetics of thrombin-catalyzed heavy-chain cleavages and light-chain cleavage of factor VIII either free or in complex with von Willebrand factor were studied using sodium dodecyl sulfate-polyacrylamide gel radioelectrophoresis and scanning densitometry of fragments derived from 125I-labeled factor VIII. Association of factor VIII with von Willebrand factor resulted in an 8-fold increase in the catalytic efficiency (kcat/Km) of light-chain cleavage (from 7 x 10(6) to 54 x 10(6) M-1 s-1). The catalytic efficiencies of heavy-chain cleavage at position 372 (approximately 6 x 10(6) M-1 s-1) and position 740 (approximately 100 x 10(6) M-1 s-1) were not affected by von Willebrand factor. We conclude that von Willebrand factor promotes cleavage of the factor VIII light chain by thrombin which is followed by rapid dissociation of the complex, so that the rate-limiting step becomes heavy-chain cleavage at position 372. This accounts for the observation that von Willebrand factor has no effect on the kinetics of activation of factor VIII by thrombin.  相似文献   

15.
von Willebrand factor binds to fibrillar type I collagen in a rapid, temperature-independent, reversible, specific, and saturable manner. Evaluation of binding isotherms by Scatchard-type analysis demonstrated that 6-18 micrograms of von Willebrand factor bind per mg of collagen, with Ka between 2 and 8 X 10(8) M-1. Five distinct tryptic fragments, purified under denaturing and reducing conditions and representing over 75% of the molecular mass of the von Willebrand factor subunit, were tested for their capacity to inhibit the von Willebrand factor-collagen interaction. Complete inhibition was obtained with a 52/48-kDa fragment at a concentration of approximately 1 microM. The location of this fragment in the subunit was established to be between Val-449 and Lys-728. Fifteen monoclonal antibodies against the 52/48-kDa fragment inhibited von Willebrand factor binding to collagen. Six antibodies against other portions of the von Willebrand factor subunit had no inhibitory effect. The tryptic fragment was a competitive inhibitor of von Willebrand factor binding to collagen and, therefore, recognizes the same interaction site as the intact molecule. These studies precisely define a domain in the von Willebrand factor subunit that interacts with type I collagen.  相似文献   

16.
Factor VIII functions in an enzyme complex upon the activated platelet membrane where phosphatidylserine exposure correlates with expression of receptors for factor VIII. To evaluate the specificity of phosphatidylserine-containing membrane binding sites for factor VIII, we have developed a novel membrane model in which phospholipid bilayers are supported by glass microspheres (lipospheres). The binding of fluorescein-labeled factor VIII to lipospheres with membranes of 15% phosphatidylserine was equivalent to binding to phospholipid vesicles (KD = 4.8 nM). Purified von Willebrand factor (vWf), a carrier protein for factor VIII, decreased membrane binding of factor VIII with a Ki of 10 micrograms/ml. Likewise, normal plasma decreased bound factor VIII by more than 90% whereas plasma lacking vWf decreased the binding of factor VIII by only 20%. Proteolytic activation of factor VIII by thrombin, which releases factor VIII from vWf, increased liposphere binding in the presence of vWf and in the presence of normal plasma. Although factor V is homologous to factor VIII and binds to lipospheres with the same affinity, purified factor V was not an efficient competitor for the membrane binding sites of factor VIII. These results indicate that phosphatidylserine-containing membrane sites have sufficient specificity to select thrombin-activated factor VIII from the range of phospholipid-binding proteins in plasma.  相似文献   

17.
《Biorheology》1995,32(1):73-93
The objective of this work was to evaluate quantitatively the effects of flow on platelet reactions using a flow cytometric technique. Whole blood was exposed to well defined, laminar shear stress in a cone-and-plate viscometer in the absence of added agonists. Blood specimens were fixed with formaldehyde and incubated with two monoclonal antibodies. Antibody 6D1, specific for platelet membrane glycoprotein Ib (GPIb), was used to identify and enumerate platelets and platelet aggregates on the basis of their characteristic forward scatter and 6D1-FITC fluorescence profiles. Anti-CD62 antibody, specific for the granule membrane protein-140 (GMP-140), was used to measure platelet activation. Results showed platelet aggregation increasing with increasing shear stress with marked increase in this response for a pathophysiological stress level of 140 dyn/cm2 and higher. This stress level also was the apparent threshold for formation of large platelet aggregates (“large” refers to particles larger than 10 μm in equivalent sphere diameter). These platelet responses to shear stress were insensitive to aspirin, but strongly inhibited by agents that elevate platelet cyclic adenosine monophosphate (cAMP) levels. Moreover, pre-incubation of whole blood with monoclonal antibodies that inhibit von Willebrand factor binding to GPIb or von Willebrand factor and fibrinogen binding to GPIIb/IIIa inhibited platelet aggregation. Aggregation induced by shear at 37° C was less in extent than at 23° C. At physiological shear stresses, whole blood was more susceptible to shear-induced platelet aggregation than platelet-rich plasma. This study reaffirms that flow cytometric methods have several important advantages in studies of shear effects on platelets, and extends the methodology to whole blood unaltered by cell separation methods.  相似文献   

18.
We have used purified proteolytic fragments of von Willebrand factor (vWF) to characterize three related functional sites of the molecule that support interaction with platelet glycoprotein Ib, collagen, and heparin. A fragment of 116 kDa was found to be dimeric and consisted of disulfide-linked subunits which, after reduction and alkylation, corresponded to the previously described 52/48-kDa fragment extending from residue 449 to 728. Fragment III-T2, also a dimer, was composed of two pairs of disulfide-linked subunits, two 35-kDa heavy chains (residues 273-511) and two 10-kDa light chains (residues 674-728). The 116-kDa fragment, but not the constituent 52/48-kDa subunit, supported ristocetin-induced platelet aggregation and retained 20% (on a molar basis) of the ristocetin cofactor activity of native vWF; fragment III-T2 retained less than 5% activity. All three fragments, however, inhibited vWF interaction with glycoprotein Ib. Both 116-kDa and 52/48-kDa fragments inhibited vWF binding to heparin with similar potency, while fragment III-T2 had no effect in this regard. Only the 116-kDa fragment inhibited vWF binding to collagen. These results indicate that dimeric fragments containing two glycoprotein Ib-binding sites possess the minimal valency sufficient to support ristocetin-induced aggregation. The sequence comprising residues 512-673, missing in fragment III-T2, is necessary for binding to heparin and collagen and may be crucial for anchoring vWF to the subendothelium. Immunochemical and functional data suggest that the same sequence, although not essential for interaction with glycoprotein Ib, may influence the activity of the glycoprotein Ib-binding site. Only binding to collagen has absolute requirement for intact disulfide bonds. Thus, the three functional sites contained in the 116-kDa domain of vWF are structurally distinct.  相似文献   

19.
We have purified a reduced and alkylated tryptic fragment of von Willebrand factor (vWF) which migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 52/48-kDa doublet, but behaved as a single 46-kDa species after partial deglycosylation. After extensive treatment with denaturants, the 52/48-kDa polypeptide retained its ability to inhibit ristocetin-induced platelet aggregation in the presence of native vWF, as well as aggregation induced by desialylated vWF alone. Therefore, the 52/48-kDa polypeptide interacts with the platelet glycoprotein Ib receptor even in the absence of ristocetin. Both the 52/48- and the 46-kDa species inhibited ristocetin-induced binding of the intact molecule to platelets, but did not affect thrombin-induced binding. Determination of the NH2-terminal sequence of both members of the doublet gave identical results: VTLNPSDPEHCQ. This provided additional evidence that differences between the doublet constituents were only of carbohydrate composition and established the position of this peptide within the vWF polypeptide chain of approximately 2050 amino acid residues as beginning with the residue tentatively designated 449. These studies suggest that native conformation is not necessary for binding of vWF to platelets at the glycoprotein Ib receptor and that a linear amino acid sequence following residue 449 defines a domain responsible for this interaction.  相似文献   

20.
Highly-purified plasma and platelet Factor VIII/von Willebrand Factor had potent lectin activity when measured in a haemagglutination assay. This lectin activity was inhibited by monoclonal and heterologous antibodies to Factor VIII/von Willebrand Factor as well as by hexosamines, mannose and net-positively charged amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号