首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A59Fe assay was designed to detect an Fe(III) binding capacity in NP-40 solubilized proteins from rabbit reticulocyte endocytic vesicles. The iron binding capacity had an apparent molecular weight as determined by gel exclusion chromatography of 450,000 daltons. The iron binding moiety coincided with the major nontransferrin iron-containing material of endocytic vesicles labeled in vivo by incubation of cells with59Fe,125I-labeled transferrin. The material solubilized from vesicles with NP-40 exhibited two classes of saturable binding sites, one with an association constant for59Fe-citrate of 3.63×109 m –1 and with 6.6×10–12 moles of iron bound per mg protein and the other with a constant of 3.96×108 m –1 and 1.0×10–12 moles of iron bound per mg protein. These affinities are sufficient to satisfy the sobulility characteristics of Fe(III) at pH 5.0. Most of the59Fe bound both in vivo and in vitro to the iron binding moiety could be displaced with56Fe and an equivalent amount of59Fe could subsequently be rebound in vitro. The iron binding assay was adopted to vesicle proteins separated by SDS-polyacrylamide gel electrophoresis with subsequent transfer to nitrocellulose and revealed an iron binding activity of molecular weight approximately 95,000 daltons.  相似文献   

2.
David G. Pope 《Planta》1978,140(2):137-142
Growth of Triticum aestivum L. cv. Cappelle Desprez coleoptiles is promoted by 5.7×10–5 M indole acetic acid (IAA) as effectively in pH 3.4 buffer as in water, but IAA is not effective in the presence of buffer at pH 3.0 or 3.2 A combination of 5.7×10–5 M IAA and pH 3.4 buffer promotes growth to a greater extent than pH 3.2 buffer alone, which is optimal for acid-induced growth. IAA employed at 10–7 M is still effective at promoting growth in the presence of pH 3.4 buffer, moreover, IAA at 10–7 M interacts synergistically with the acidic buffer to promote growth. It is concluded that IAA and acid promote growth via separate mechanisms, and that IAA does not promote cell wall loosening by rendering the cell wall more acid.Abbreviation IAA Indoleacetic acid  相似文献   

3.
Summary A salicylate-hydroxylase-producing strain of Pseudomonas putida with an unusual capability to grow at toxic levels of salicylate up to 10 g l–1 has been isolated. It grew well under continuous culture conditions, with optimum growth at pH 6.5 and a temperature of 25° C. The use of an ammonium salt as a nitrogen source, instead of nitrate, resulted in a 30–40% increase in its biomass yield coefficient. Optimum growth under continuous culture conditions was achieved using 4 g l–1 salicylate at 25° C, pH 6.5 and 0.2 h–1 dilution rate. High salicylate hydroxylase enzyme activity [236 units (U) l–1] and productivity (424.8 U h–1) were obtained at a dilution rate of 0.45 h–1 using a mineral medium containing 4 g l–1 of salicylate. Operating under continuous culture conditions with oxygen limitation and a slight accumulation of residual salicylate (0.2 g l–1) resulted in a decrease in culture performance and enzyme productivity. Correspondence to: R. Marchant  相似文献   

4.
Summary Sunflowers are known to respond to Fe deficiency (-Fe) with a typical root tip swelling and the formation of root hairs and transfer cells in the rhizodermis. The possible regulation of this process was examined by a comparative study of root morphology and cytology of intact seedlings (Helianthus annuus L. cv. Giganteus) under -Fe and hormonal treatment in nutrient solution. Longitudinal sections of -Fe roots showed root tip swelling is due to cessation of cell elongation and isodiarnetric volume increase of the cortical cells. Enhanced cell division in the pericycle leads to the formation of lateral root primordia in the swollen zone. Xylem vessel differentiation is markedly accelerated and accompanied by early differentiation of the casparian band in the endodermis. Exogenous application of IAA (10–8-10–7 M) via the nutrient solution to Fe sufficient plants causes symptoms which closely mimick the characteristics of Fe deficiency including root hair development. Moreover, rhizodermal cells produce peripheral protuberances reminiscent of -Fe transfer cells. Ethylene-releasing ethephon (10–4M) also causes subapical swelling and root hair formation. However, wall protuberance development is less pronounced. ABA (10–5 M) leads to similar root thickening and root hair formation but without any comparable transfer cell differentiation. From the striking similarities between -Fe and IAA treatment it is concluded that this hormone (possibly in cooperation with ethylene) is involved in the Fe stress response of sunflower roots. The importance of a continuous polar IAA transport for this process is discussed.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - Ethephone 2-chloro-ethylphosphonic acid - Fe(III)-EDTA ethylenediaminetetraacetic ferric-sodium salt - IAA indole-acetic acid - TIBA triiodobenzoic acid  相似文献   

5.
Bulbous rush (Juncus bulbosus) is a pioneer species in acidic, iron-rich, coal mining lakes in the eastern part of Germany. Juncus roots are coated with iron plaques, and it has been suggested that microbial processes under the iron plaques might be supportive for Juncus plant growth. The objectives of this work were to enumerate the microbes involved in the turnover of iron and organic root exudates in the rhizoplane, to investigate the effect of oxygen and pH on the utilization of these exudates by the rhizobacteria, and to study the ability of the root-colonizing microbiota to reduce sulfate. Enumeration studies done at pH 3 demonstrated that 106 Fe(III) reducers and 107 Fe(II) oxidizers g (fresh wt root)–1 were associated with Juncus roots. When roots were incubated in goethite-containing medium without and with supplemental glucose, Fe(II) was formed at rates approximating 1.1 mmol g (fresh wt root) –1 d–1 and 3.6 mmol g (fresh wt root)–1 d–1 under anoxic conditions, respectively. These results suggest that a rapid microbially mediated cycling of iron occurs in the rhizosphere of Juncus roots under changing redox conditions. Most-probable-number estimates of aerobes and anaerobes capable of consuming root exudates at pH 3 were similar in the rhizosphere sediment and in Juncus roots, but numbers of aerobes were significantly higher than those of anaerobes. At pH 3, supplemental organic exudates were primarily subject to aerobic oxidation to CO2 and not subject to fermentation. However, at pH 4.5, root exudates were also rapidly utilized under anoxic conditions. Root-associated sulfate reduction was not observed at pH 3 to 4.5 but was observed at pH 4.9. The pH increased during all root-incubation studies both under oxic and anoxic conditions. Thus, as result of the microbial turnover of organic root exudates, pH and CO2 levels might be elevated at the root surface and favor Juncus plants to colonize acidic habitats.  相似文献   

6.
Summary A comparative study of iron removal at 30–60 C and pH 4–9 by pure (Aeromonas sp.) and mixed culture of iron resistant microbes (FMC) showed maximum efficiency of 45% (pH-8, 40 C) and 90% (pH-9, 40C) respectively in 60–72 h using a synthetic ferric citrate medium containing 650 mg/l Fe(III) with ammonium chloride as nitrogen source.  相似文献   

7.
Summary Changes in extracellular pH (pH o ) in human red cell suspensions were monitored in a stopped-flow rapid reaction apparatus. A 20% suspension of washed human RBC in saline at pH 7 containing NaHCO3 and extracellular carbonic anhydrase was mixed with an equal volume of buffered saline solution at pH 6.7. Sodium salicylate, when present, was added to both the erythrocyte suspension and the buffer solution. The effects of salicylate in the therapeutic to toxic concentration range on HCO 3 /Cl exchange were studied at 37°C. HCO 3 /Cl exchange flux was estimated using the extracellular buffer capacity and the difference betweendpH o /dt using a control RBC suspension and that using a suspension of RBC whose anion exchange pathway was markedly inhibited. The results show that salicylate competitively decreases the rate of HCO 3 /Cl exchange, with inhibition increasing as salicylate concentration increases.K I is 2.4mm. At a salicylate concentration of 10mm, HCO 3 /Cl exchange under the conditions of our experiments was inhibited by more than 70%. These findings are consistent with the possibility that CO2 transfer in capillary bedsin vivo may be diminished in the presence of salicylate due to slowing of red cell HCO 3 /Cl exchange.  相似文献   

8.
The kinetics of binding of Cu (II), Tb (III) and Fe(III) to ovotransferrin have been investigated using the stopped-flow technique. Rate constants for the second-order reaction, k +, were determined by monitoring the absorbance change upon formation of the metal-transferrin complex in time range of milliseconds to seconds. The N and C sites appeared to bind a particular metal ion with the same rate; thus, average formation rate constants k + (average) were 2.4 × 104 M–1 s–1 and 8.3 × 104 M–1 S –1 for Cu (II) and Tb (III) respectively. Site preference (N site for Cu (II) and C site for Tb (III)) is then mainly due to the difference in dissociation rate constant for the metals. Fe (III) binding from Fe-nitrilotriacetate complex to apo-ovotransferrin was found to be more rapid, giving an average formation rate constant k + (average) of 5 × 105 M–1 s–1, which was followed by a slow increase in absorbance at 465 nm. This slow process has an apparent rate constant in the range 3 s–1 to 0.5 s–1, depending upon the degree of Fe (III) saturation. The variation in the rate of the second phase is thought to reflect the difference in the rate of a conformational change for monoferric and diferric ovotransferrins. Monoferric ovotransferrin changes its conformation more rapidly (3.4s–1) than diferric ovotransferrin (0.52 s–1). A further absorbance decrease was observed over a period of several minutes; this could be assigned to release of NTA from the complex, as suggested by Honda et al. (1980).Abbreviations Tf ovotransferrin - NTA nitrilotriacetate Jichi Medical School, School of Nursing, Yakushiji 3311-159, Minamikawachi, Tochigi, 329-04 Japan  相似文献   

9.
Non-protein-bound iron in human synovial fluid was determined using high-performance liquid chromatography with electrochemical detection. The procedure was based on the separation of the iron—diethylenetriaminepentaacetic acid (DPTA) complex formed directly on a chromatographic column containing an anion-exchange resin followed by electrochemical detection. The method enabled more than 0.1 μM Fe(III) to be determined with an injection volume of 10 μl. A mixture of synovial fluid, 20 μM DTPA and acetate buffer was incubated in the presence and absence of superoxide (O2) generated by a xanthine—xanthine oxidase system and was ultrafiltered through a 30 000 molecular mass cut-off filter. No iron was detected in the ultrafiltrate at physiological pH. However, the presence of iron was observed in the ultrafiltrate at low pH, and O2 and decreased pH, iron may be released into the synovial fluid.  相似文献   

10.
In this experiment we (i) tested the hypothesis that, besides decreasing leaf C fixation, lime induced iron (Fe) deficiency increases root C fixation via PEP carboxylase and (ii) assessed the Fe-induced modifications in the elemental composition of plant tissues. Sugar beet plants were grown in nutrient solutions with Fe (45 M Fe-EDTA; +Fe control) or in a similar nutrient solution without Fe (–Fe) and in presence of CaCO3 (1.0 gL–1), either labelled with 13C (20 at. %) or unlabelled. After 7 and 17 days from treatment imposition, plants were harvested and single organs analysed for total O, C, H, macro and micronutrients. 13C abundance was also assessed in control, unlabelled and labelled –Fe plants. Iron deficiency caused significant growth reductions; chlorophyll and net photosynthesis decreased markedly in Fe-deficient plants when compared to the controls, whereas leaf transpiration rates and stomatal conductance were not affected by Fe deficiency. Iron deficient plants had leaf biomass with lower C (2 to 4%) and higher O (3 to 5%) concentrations than +Fe plants. The 13C was higher (less negative) in +Fe than in –Fe unlabelled plants. Iron deficient plants grown in the nutrient solution enriched with labelled CaCO3 absorbed a relatively small amount of labelled C, which was mainly recovered in the fine roots and accounted for less than 2% of total C gain in the 10 d treatment period. Evidences suggest that iron deficient sugar beets grown in the presence of CaCO3 do not markedly shift their C fixation from leaf RuBP to root PEPC.  相似文献   

11.
Zou  C.  Shen  J.  Zhang  F.  Guo  S.  Rengel  Z.  Tang  C. 《Plant and Soil》2001,235(2):143-149
Comparative studies on the effect of nitrogen (N) form on iron (Fe) uptake and distribution in maize (Zea mays L. cv Yellow 417) were carried out through three related experiments with different pretreatments. Experiment 1: plants were precultured in nutrient solution with 1.0×10–4 M FeEDTA for 6 d and then exposed to NO3–N or NH4–N solution with 1.0×10–4 M FeEDTA or without for 7 d. Experiment 2: plants were precultured with 59FeEDTA for 6 d and were then transferred to the solution with different N forms, and 0 and 1.0×10–4 M FeEDTA for 8 d. Experiment 3: half of roots were supplied with 59FeEDTA for 5 d and then cut off, with further culturing in treatment concentrations for 7 d. In comparison to the NH4-fed plants, young leaves of the NO3-fed plants showed severe chlorosis under Fe deficiency. Nitrate supply caused Fe accumulation in roots, while NH4–N supply resulted in a higher Fe concentration in young leaves and a lower Fe concentration in roots. HCl-extractable (active) Fe was a good indicator reflecting Fe nutrition status in maize plants. Compared with NO3-fed plants, a higher proportion of 59Fe was observed in young leaves of the Fe-deficient plants fed with NH4–N. Ammonium supply greatly improved 59Fe retranslocation from primary leaves and stem to young leaves. Under Fe deficiency, about 25% of Fe in primary leaves of the NH4-fed plants was mobilized and retranslocated to young leaves. Exogenous Fe supply decreased the efficiency of such 59Fe retranslocation. The results suggest that Fe can be remobilized from old to young tissues in maize plants but the remobilization depends on the form of N supply as well as supply of exogenous Fe.  相似文献   

12.
Comparison of plant uptake and plant toxicity of various ions in wheat   总被引:1,自引:0,他引:1  
The effects of varying solution concentrations of manganese (Mn), zinc (Zn), copper (Cu), boron (B), iron (Fe), gallium (Ga) and lanthanum (La) on plant chemical concentrations, plant uptake and plant toxicity were determined in wheat (Triticum aestivum L.) grown in a low ionic strength (2.7×10–3 M solution culture). Increasing the solution concentration of Mn, Zn, Cu, B, Fe, Ga and La increased plant concentrations of that ion. Asymptotic maximum plant concentrations were reached for Zn (10 mg kg DM–1 in the roots), Ga (2 mg kg DM–1 in the tops and 18 mg kg DM–1 in the roots) and La (0.4 mg kg DM–1 in the tops and 4 mg kg DM–1 in the roots). Plant ion concentrations were, on average, 3 times higher in the roots than the tops for Mn and Zn, 7 times for Cu, 9 times for Fe, 12 times for Ga and 15 times for La. In contrast, B concentrations were higher in the tops than the roots by, on average, 2 times. The estimated toxicity threshold (plant concentration at which a rapid decrease in yield occurred) in the tops was 0.4 mg g DM–1 for B, 2 for Zn, 0.075 for Cu and 0.09 for La and in the roots 0.2 mg g DM–1 for B, 5 for Zn, 0.3 for Cu and 3 for La. Plant uptake rates of the ions (as estimated by the slope of the relationship between solution ion concentrations and plant ion concentrations) was in the order B 250 mg kg DM–1 M –1). Plant toxicity was estimated as the reciprocal of the plant concentration that reduced yield by 50% (change in relative yield per mg ion kg DM–1). The plant toxicity of the ions tested was in the order Mn相似文献   

13.
Hemopexin (HPX) serves as a trap for toxic plasma heme, ensuring its complete clearance by transportation to the liver. Moreover, HPX-heme has been postulated to play a key role in the homeostasis of nitric oxide (NO). Here, the thermodynamics for NO binding to rabbit ferrous HPX-heme as well as the EPR and optical absorption spectroscopic properties of rabbit ferrous nitrosylated HPX-heme (HPX-heme-NO) are reported. The value of the dissociation equilibrium constant for NO binding to rabbit ferrous HPX-heme (i.e., H) is (1.4±0.2)×10–7 M, at pH 7.0 and 10.0 °C; the value of H is unaffected by sodium chloride. At pH 7.0, rabbit ferrous HPX-heme-NO is a six-coordinate heme-iron species, characterized by an X-band EPR spectrum with an axial geometry and by =146 mM–1 cm–1 at 419 nm. At pH 4.0, rabbit ferrous HPX-heme-NO is a five-coordinate heme-iron species, characterized by an X-band EPR spectrum with three-line splitting centered at 334 mT and by =74 mM–1 cm–1 at 387 nm. The pKa value of the reversible pH-induced six- to five-coordinate spectroscopic transition is 4.8±0.1 in the absence of sodium chloride and 4.3±0.1 in the presence of 1.5×10–1 M sodium chloride. This result is in agreement with the effect of sodium chloride on rabbit HPX-heme stability. The present data have been analyzed in parallel with those of a related heme model compound and heme-protein systems.  相似文献   

14.
The siderophore production of various isolates of Phialocephala fortinii was assessed quantitatively as well as qualitatively in batch assays under pure culture conditions at different pH values and iron(III) concentrations. We found a distinct effect of both of these parameters on siderophore synthesis and as well as on fungal growth. In comparative analyses of two of the isolates, maximum siderophore production was found at a pH in the range of pH 4.0 to 4.5 while, under the experimental conditions employed, the optimal concentration of ferric iron was determined to be between 20–40 g iron (III) l–1 (0.36–0.72 M, respectively). HPLC analysis of the culture filtrate of most of the isolates of P. fortinii revealed the excretion of ferricrocin as main hydroxamate siderophore, followed by ferrirubin and ferrichrome C. The pattern of release of these three substances proved to be dependent on pH and iron(III) concentration of the culture medium, and to be specific for each isolate under investigation.  相似文献   

15.
The microbial diversity in two deep, confined aquifers, the Grande Ronde (1270 m) and the Priest Rapids (316 m), Hanford Reservation, Washington, USA, was investigated by sampling from artesian wells. These basaltic aquifers were alkaline (pH 8.5 to 10.5) and anaerobic (Eh –200 to –450 mV). The wells were allowed to free-flow until pH and Eh stabilized, then the microflora was sampled with water filtration and flow-through sandtrap methods. Direct microscopic counts showed 7.6 × 105 and 3.6 × 103 bacteria ml–1 in water from the Grande Ronde and Priest Rapids aquifers, respectively. The sand filter method yielded 5.7 × 108 and 1.1 × 105 cells g–1 wet weight of sand. The numbers of bacteria did not decrease as increasing volumes of water were flushed out. The heterotrophic diversity of these bacterial populations was assessed using enrichments for 20 functional groups. These groups were defined by their ability to grow in a matrix of five different electron acceptors (O2, Fe(III), NO3 , SO4 2–, HCO3 ) and four groups of electron donors (fermentation products, monomers, polymers, aromatics) in a mineral salts medium at pH 9.5. Growth was assessed by protein production. Culture media were subsequently analyzed to determine substrate utilization patterns. Substrate utilization patterns proved to be more reliable indicators of the presence of a particular physiological group than was protein production. The sand-trap method obtained a greater diversity of bacteria than did water filtration, presumably by enriching the proportion of normally sessile bacteria relative to planktonic bacteria. Substrate utilization patterns were different for microflora from the two aquifers and corresponded to their different geochemistries. Activities in the filtered water enrichments more closely matched those predicted by aquifer geochemistry than did the sand-trap enrichments. The greatest activities were found in Fe(III)-reducing enrichments from both wells, SO4-reducing enrichments from the Grande Ronde aquifer, and methanogenic enrichments from the Priest Rapids aquifer. Organisms from these aquifers may be useful for high-pH bioremediation applications as well as production of biotechnological products. These organisms may also be useful for modeling potential reactions near buried concrete, as might be found in subsurface waste depositories. Offprint requests to: T. O. Stevens.  相似文献   

16.
Benthic sulfate reduction and sediment pools of sulfur and iron were examined during January 1992 at 3 stations in the Ao Nam Bor mangrove, Phuket, Thailand. Patterns of sulfate reduction rates (0–53 cm) reflected differences in physical and biological conditions at the 3 stations, and highest rates were found at the vegetated site within the mangrove (Rhizophora apiculata) forest. Due to extended oxidation of mangrove sediments, a large portion of the added35S-label was recovered in the chromium reducible pools (FeS2 and S0) (41–91% of the reduced sulfur). Pyrite was the most important inorganic sulfur component, attaining pool sizes 50–100 times higher than acid volatile pools (FeS). HCl-extractable (0.5 M HCl) iron pools, including Fe(II)HCl and Fe(III)HCl, were generally low and Fe(III)HCl was only present in the upper surface layers (0–5 cm). Maximum concentrations of dissolved Fe2+ (35–285 M) occurred just about the depth where dissolved H2S accumulated. Furthermore Fe2+ and H2S coexisted only where concentrations of both were low. There was an accumulation of organic sulfur in the deep sediment at 2 stations in the inner part of the mangrove. The reoxidation of reduced sulfides was rapid, and storage of sulfur was minor in the upper sediment layers, where factors like bioturbation, the presence of roots, or tidal mixing enhance oxidation processes.Author of correspondence.  相似文献   

17.
A second trypsin inhibitor (DMTI-II) was purified from the seed of Dimorphandra mollis (Leguminosae-Mimosoideae) by ammonium sulfate precipitation (30–60%), gel filtration, and ion-exchange and affinity chromatography. A molecular weight of 23 kDa was estimated by gel filtration on a Superdex 75 column SDS-PAGE under reduced conditions showed that DMTI-II consisted of a single polypeptide chain, although isoelectric focusing revealed the presence of three isoforms. The dissociation constant of 1.7 × 10–9 M with bovine trypsin indicated a high affinity between the inhibitor and this enzyme. The inhibitory activity was stable over a wide pH range and in the presence of DTT. The N-terminal sequence of DMTI-II showed a high degree of homology with other Kunitz-type inhibitors.  相似文献   

18.
Summary It has previously been shown that a protein extracted fromGonyaulax polyedra strongly and specifically binds luciferin, the substrate of the bioluminescent reaction. This binding is markedly dependent on pH with tight binding at pH 8.0 and almost no binding at pH 6.5, as measured by two independent methods. A procedure for the determination of the dissociation constant (Kd) of the luciferin binding protein (LBP) is presented, and Kd is estimated to be7×10–9 M at pH 8.0, assuming an overall quantum yield of 0.1 for the bioluminescent reaction. With cells grown in a 12 h light — 12 h dark cycle, 5 to 10 times more LBP activity can be extracted from dark phase cells than from light phase cells. This rhythm persists in a circadian fashion in cultures maintained in constant dim light.Supported in part by a grant from the National Institutes of Health to J.W.H. (GM 19536)  相似文献   

19.
Hydroxylated radical products of salicylic acid are often used as a relative measurement in free radical research. Several analytical methods exist to determine the amount of 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid. In this study we use capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC) in order to determine these free radical products. The CZE experiment was optimized with a CZE simulation program in order to achieve an optimal pH. Calibration curves were recorded in the range 10−6–10−4 M and the detection limit was determined. For both CZE and MECC it was 2·10−7 M. Both methods resulted in a reproducible analysis of salicylate and its hydroxylated free radical products in 6 min.  相似文献   

20.
In oligotrophic waters, not only community structure but also physiological properties of heterotrophic bacteria are influenced by the concentration of organic matter.The relationship between growth rate of two facultatively oligotrophic strains ofAeromonas sp. No. 6 andFlavobacterium sp. M1 was studied in comparison with that of two eutrophic strains ofEscherichia coli 7020 andFlavobacterium sp. M2. These strains had two or three different substrate constants (Ks values) depending on substrate concentrations: Ks values for the two former were remarkably lower than those for the two latter. For instance, Ks value forAeromonas sp. No. 6 was about 8.9M when substrate concentration was greater than 53M and about 1.1M when substrate concentration was less man 53M. InE. coli the Ks value was about 260M at greater than 5600M and about 47M at less than 5600M substrate concentration.Uptake kinetics ofAeromonas sp. grown in a medium containing 2.7 mM glutamate (H-cell) and 0.11M glutamate (L-cell) have been determined for the intact cells. H-cell had two distinct values of Km for glutamate assimilation and respiration, and L-cell had three distinct values of Km for glutamate assimilation and respiration: In H-cell Km of assimilation was 2.8×10–7 M and 1.5×10–4 M, and Km of respiration was 2.3×10–7 M and 1.7×10–4 M; in L-cell Km of assimilation was 7.4×10–8 M, 8.3×10–6 M, and 1.3×10–4 M, and Km of respiration was 2.5×10–7, 8.9×10–6M, and 1.7×10–4 M. More than 60% of glutamate taken up by the H- and L-cells was respired when the substrate concentration was less than 10–6 M, although at greater than 10–6 M, 50% and 30% of glutamate was respired by H-cells and L-cells, respectively. These results suggest that the facultatively oligotrophic bacteria grow with high efficiency in environments with extremely low nutrient concentration, such as oligotrophic waters of lakes and ocean, as compared with in their growth in conditions of high nutrient concentraton, such as nutrient broth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号