首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environments of the binding subsites in Asp 101-modified lysozyme, in which glucosamine or ethanolamine is covalently bound to the carboxyl group of Asp 101, were investigated by chemical modification and nuclear magnetic resonance spectroscopy. Trp 62 in each of the native and the modified lysozymes was nitrophenylsulfenylated. The yield of the nitrophenylsulfenylated derivative from the lysozyme modified with glucosamine at Asp 101 (GlcN-lysozyme) was considerably lower than those from native lysozyme and from the lysozyme modified with ethanolamine at Asp 101 (EtN-lysozyme). These results suggest that Trp 62 in GlcN-lysozyme is less susceptible to nitrophenylsulfenylation. Kinetic analyses of the [Trp 62 and Asp 101]-doubly modified lysozymes indicated that the nitrophenylsulfenylation of Trp 62 in the native lysozyme, EtN-lysozyme, or GlcN-lysozyme decreased the sugar residue affinity at subsite C while increasing the binding free energy change by 2.7 kcal/mol, 1.5 kcal/mol, or 0.1 kcal/mol, respectively. Although the profile of tryptophan indole NH resonances in the 1H-NMR spectrum for EtN-lysozyme was not different from that for the native lysozyme, the indole NH resonance of Trp 62 in GlcN-lysozyme was apparently perturbed in comparison with that of native lysozyme. These results suggest that the environment of subsite C in GlcN-lysozyme is considerably different from those in native lysozyme and EtN-lysozyme. The glucosamine residue attached to Asp 101 may contact the sugar residue binding site of the lysozyme, affecting the environment of subsite C.  相似文献   

2.
A lysozyme derivative in which two domains were cross-linked intramolecularly was newly prepared by means of a two-step reaction. First, the beta-carboxyl group of Asp101 in lysozyme was selectively modified with 2-(2-pyridyldithio)ethylamine in the presence of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride. After reduction of the pyridyldithio moiety of Asp101 modified lysozyme at pH 4.5 with dithiothreitol, the derivative was allowed to cross-link intramolecularly by reaction with 1,3-dichloroacetone at pH 7. Intramolecularly cross-linked lysozyme thus formed was purified by gel chromatography followed by ion-exchange chromatography. Based on the results of 1H-NMR and peptide analyses, it was concluded that Asp101 was cross-linked to Trp62 with a -CH2COCH2SCH2CH2NH-bridge in this derivative. The derivative showed minor but distinct activity against Micrococcus lysodeikticus and glycol chitin. Its melting temperature for thermal denaturation was higher by 7.3 degrees than that of native lysozyme at pH 3.  相似文献   

3.
The three-dimensional structures of native partridge egg-white lysozyme (PEWL) and PEWL complexed with tri-N-acetylchitotriose inhibitor have been determined crystallographically and refined at 1.9 A resolution. Crystals of native and complexed protein are isomorphous and have space group and cell dimensions that are identical to those of hen egg-white lysozyme (HEWL) under similar crystallization conditions. Full occupancy of the trisaccharide in the inhibitor complex has allowed definitive modeling and refinement of all three sugar residues, located at subsites A, B, and C in the PEWL active site. A comparison has been made with HEWL/inhibitor complexes in which coordinates were either not refined (Blake CCF, et al., 1967, Proc R Soc B 167:378-388) or were refined at partial occupancy (Cheetham JC, Artymiuk PJ, Phillips DC, 1992, J Mol Biol 224:613-628). Although the loop comprising residues 70-75 is located on the surface of the protein and not near the active site, it appears to be affected indirectly by trisaccharide binding such that the loop shifts toward the active site and becomes relatively immobilized. The source of this loop movement appears to be the anchoring of Trp62, located in the active site cleft, as it forms a hydrogen bond with O6 of the N-acetylglucosamine at site C. Good electron density for the trisaccharide in the PEWL complex structure shows that Asp 101 is involved in hydrogen bonding interactions with the terminal sugar residue.  相似文献   

4.
A mechanism for the selective modification of Asp-101 in hen egg-white lysozyme with an amine nucleophile catalyzed by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC) was investigated using ethanolamine as a nucleophile at pH 5.0 and room temperature. In the presence of N-acetyl-D-glucosamine (NAG) and its oligomers [(NAG)n, n = 2 and 3] under the conditions with which about 90% of lysozyme was calculated to form complexes, the formation of Asp-101 modified lysozyme decreased markedly but to different degrees, that is (NAG)3 was the most and NAG the least effective. When the lysozyme derivative, in which Trp-62 in the active site cleft was oxidized to oxindolealanine (Ox-62 lysozyme), was used in place of native lysozyme, the formation of Asp-101 modified derivative decreased to about half, which was similar to the decrease in the presence of (NAG)2. In the presence of 0.5 M NaCl, on the other hand, the formation of Asp-101 modified lysozyme was considerably enhanced. From these observations, it is concluded that EDC binds to the active site cleft of lysozyme to specifically activate Asp-101. The affinity of EDC to the active site of lysozyme is partly due to the hydrophobic interaction of EDC with the Trp-62 residue at sub-site B of lysozyme. EDC is an activating reagent for carboxyl groups unlike most active site-directed reagents which produce final products directly. Therefore, the active site-directed nature of EDC was very useful because it made it possible to selectively introduce various amines as needed at a particular carboxyl group of lysozyme.  相似文献   

5.
On the basis of the molecular evolution of hen egg white, human, and turkey lysozymes, three replacements (Trp62 with Tyr, Asn37 with Gly, and Asp101 with Gly) were introduced into the active-site cleft of hen egg white lysozyme by site-directed mutagenesis. The replacement of Trp62 with Tyr led to enhanced bacteriolytic activity at pH 6.2 and a lower binding constant for chitotriose. The fluorescence spectral properties of this mutant hen egg white lysozyme were found to be similar to those of human lysozyme, which contains Tyr at position 62. The replacement of Asn37 with Gly had little effect on the enzymatic activity and binding constant for chitotriose. However, the combination of Asn37----Gly (N37G) replacement with Asp101----Gly (D101G) and Trp62----Tyr (W62Y) conversions enhanced bacteriolytic activity much more than each single mutation and restored hydrolytic activity toward glycol chitin. Consequently, the mutant lysozyme containing triple replacements (N37G, W62Y, and D101G) showed about 3-fold higher bacteriolytic activity than the wild-type hen lysozyme at pH 6.2, which is close to the optimum pH of the wild-type enzyme.  相似文献   

6.
Interaction between hen egg white lysozyme and chitotrisaccharide was investigated by 1H-NMR spectroscopy using partially acetylated chitotrisaccharides and chemically modified lysozyme. Monoacetyl (GlcN-GlcN-GlcNAc), diacetyl (GlcN-GlcNAc-GlcNAc), or triacetyl chitotrisaccharide [(GlcNAc)3] was added to the lysozyme solution, and the changes in the 1H-NMR signals of the lysozyme were analyzed. Although many of the resonances were affected by addition of the saccharide, the most remarkable effect was seen on the signal of Trp28 C5H which is in a hydrophobic box adjacent to the saccharide-binding site. The signal shifted upfield by 0.2 ppm upon (GlcNAc)3 binding, whereas the chemical shift change of the signal resulting from binding of GlcN-GlcNAc-GlcNAc or GlcN-GlcN-GlcNAc was smaller than that resulting from (GlcNAc)3 binding. When the Asp101-modified lysozyme was used instead of the native lysozyme, the chemical shift change of the Trp28 C5H signal resulting from (GlcNAc)3 binding was also smaller than that for the native lysozyme. The chemical shift change of the signal reflects the conformational change of the hydrophobic box region which should synchronize with the movement of the binding site resulting from the saccharide binding. Therefore, the conformational change resulting from the saccharide binding might be reduced when the sugar residues located at binding subsites A and B of the lysozyme are deacetylated, as well as when Asp101 interacting with the sugar residues at the same subsites is modified.  相似文献   

7.
The three-dimensional structure of the single-chain Fv fragment 1F9 in complex with turkey egg-white lysozyme (TEL) has been determined to a nominal resolution of 2.0 A by X-ray diffraction. The scFv fragment 1F9 was derived from phage-display libraries in two steps and binds both hen and turkey egg-white lysozyme, although the level of binding affinity is two orders of magnitude greater for the turkey lysozyme. The comparison of the crystal structure with a model of the single-chain Fv fragment 1F9 in complex with hen egg-white lysozyme (HEL) reveals that in the latter a clash between Asp101 in lysozyme and Trp98 of the complementarity determining region H3 of the heavy chain variable domain occurs. This is the only explanation apparent from the crystal structure for the better binding of TEL compared to HEL.The binding site topology on the paratope is not simply a planar surface as is usually found in antibody-protein interfaces, but includes a cleft between the light chain variable domain and heavy chain variable domain large enough to accommodate a loop from the lysozyme. The scFv fragment 1F9 recognizes an epitope on TEL that differs from the three antigenic determinants recognized in other known crystal structures of monoclonal antibodies in complex with lysozyme.  相似文献   

8.
The interactions of the substrate analogues, GlcNAc, beta-methyl GlcNAc, (GlcNAc)2, and (GlcNAc)3, with turkey egg-white lysozyme [ED 3.2.1.17], in which the Asp 101 of hen lysozyme is replaced by Gly, were studied at various pH values by measuring changes in the circular dichroic (CD) band at 295 nm. Results were compared with those for hen egg-white lysozyme. The modes of binding of these substrate analogues to turkey lysozyme were very similar to those hen lysozyme except for the participation of Asp 101 in hen lysozyme. The ionization constants of the catalytic carboxyls, Glu 35 and Asp 52, in the turkey lysozyme-(GlcNAc)3 complex were determined by measuring the pH dependence of the CD band at 304 nm, which originates from Trp 108 near the catalytic carboxyls. The ionization behavior of the catalytic carboxyls of turkey lysozyme in the presence and absence of (GlcNAc)3 was essentially the same as that for hen lysozyme. The pH dependence of the binding constant of (GlcNAc)3 to hen lysozyme was compared with that to turkey lysozyme between pH 2 and 8. The pH dependence of the binding constant for (GlcNAc)3 to turkey lysozyme could be interpreted entirely in terms of perturbation of catalytic carboxyls. In the case of hen lysozyme, it was interpreted in terms of perturbation of the catalytic carboxyls and Asp 101 in the substrate-binding site. The pK values of Asp 101 in hen lysozyme and the hen lysozyme-(GLcNAc)3 complex were 4.5 and 3.4, respectively. The binding constants of (GlcNAc)3 to lysozyme molecules with different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated. The binding constant of lysozyme, in which Asp 52 and Glu 35 are deprotonated, to (GlcNAc)3 was the smallest. The other three species had similar binding constant to (GlcNAc)3.  相似文献   

9.
Approaches to improving the functionality of lysozyme are presented. Lysozyme was variously modified and the stabilities of the derivatives were determined by thermal denaturation experiments. Contributions of salt bridge(s), hydrophobic interactions(s), and cross-linkage(s) were evaluated. The stabilities against proteolysis were also considered. For the latter stability, it might be important to depress the rate of unfolding, i.e., to stabilize the native conformation. As a rule, salt bridges and hydrophobic interactions stabilize the native conformation and cross-linkages destabilize the denatured conformation. However, cross-linkages are apt to introduce strains in the native conformation and only suitable lengths of cross-linkages can stabilize the protein. The stabilization was shown to be generally effective in improving the functionality of proteins. Catalytic groups in lysozyme (Glu-35 and Asp-52) were variously modified and finally converted to the respective amides. The participation of these groups in the catalytic function was confirmed. The specificity of lysozyme was modified. Asp-101, which lies on the top of the active site cleft of lysozyme, was variously modified and the effects on the hydrolysis patterns of a hexamer of N-acetylglucosamine were analyzed. Some approaches to endowing lysozyme with altered functions are also presented. In order to give higher esterase activity to lysozyme, the complementarity of enzyme and substrate was investigated by modifying substrate and the active site cleft of lysozyme. An attempt was made to convert lysozyme into a transaminase by introducing pyridoxamine to the active site cleft of lysozyme. Finally, we have started to apply genetic engineering to this kind of investigation and would like to see how far we can go with protein engineering to improve the nature of proteins.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

10.
Cobalamin-independent methionine synthase (MetE) catalyzes the synthesis of methionine by a direct transfer of the methyl group of N5-methyltetrahydrofolate (CH3-H2PteGlun) to the sulfur atom of homocysteine (Hcy). We report here the first crystal structure of this metalloenzyme under different forms, free or complexed with the Hcy and folate substrates. The Arabidopsis thaliana MetE (AtMetE) crystals reveal a monomeric structure built by two (betaalpha)8 barrels making a deep groove at their interface. The active site is located at the surface of the C-terminal domain, facing the large interdomain cleft. Inside the active site, His647, Cys649, and Cys733 are involved in zinc coordination, whereas Asp605, Ile437, and Ser439 interact with Hcy. Opposite the zinc/Hcy binding site, a cationic loop (residues 507-529) belonging to the C-terminal domain anchors the first glutamyl residue of CH3-H4PteGlu5. The pterin moiety of CH3-H4PteGlu5 is stacked with Trp567, enabling the N5-methyl group to protrude in the direction of the zinc atom. These data suggest a structural role of the N-terminal domain of AtMetE in the stabilization of loop 507-529 and in the interaction with the poly-glutamate chain of CH3-H4PteGlun. Comparison of AtMetE structures reveals that the addition of Hcy does not lead to a direct coordination of the sulfur atom with zinc but to a reorganization of the zinc binding site with a stronger coordination to Cys649, Cys733, and a water molecule.  相似文献   

11.
In the cross-linking reaction of lysozyme between Leu129 (alpha-COO-) and Lys13 (epsilon-NH3+) using imidazole and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC), a side reaction of the peptide bond inversion from alpha to beta between Asp101 and Gly102 was greatly reduced by addition of beta-(1,4)-linked trimer of N-acetyl-D-glucosamine [(NAG)3]. When methylamine or 2-hydroxyethylamine was further added, the extent of the cross-link formation was decreased and the derivative where the alpha-carboxyl group of Leu129 was modified with the amine was newly obtained. On the other hand, when ammonia was added, the beta-carboxyl group of Asp119 instead of the alpha-carboxyl group was mainly amidated. From these results, the presence of a salt bridge between Asp119 and Arg125 besides that between Lys13 and Leu129, is proposed. Enzymatic activities of the derivatives prepared here indicated that the modification of the alpha-carboxyl group reduced the activity to approximately 90% of that of native lysozyme. Des-Leu129 lysozyme, which lacks Leu129, also showed approximately 90% of the activity of native lysozyme. Therefore, the salt bridge between Lys13 and Leu129 may play some role in maintaining the active conformation of lysozyme.  相似文献   

12.
Site-directed mutagenesis study was performed to elucidate the role of conserved tryptophan-101 present at the active site of phosphoserine aminotransferase from an enteric human parasite Entamoeba histolytica. Fluorescence resonance energy transfer and molecular dynamic simulation show that the indole ring of Trp101 stacks with the cofactor PLP. Loss of enzymatic activity and PLP polarization values suggest that Trp101 plays a major role in maintaining a defined PLP microenvironment essentially required for optimal enzymatic activity. Studies on W101F, W101H and W101A mutants show that only the indole ring of the conserved Trp101 forms most favorable stacking interaction with the pyridine ring of the cofactor PLP. Protein stability was compromised on substitution of Trp101 with Phe/His/Ala amino acids. A difference in conformational free energy of 1.65?kcal?mol(-1) was observed between WT-protein and W101A mutant.  相似文献   

13.
T Endo  T Ueda  H Yamada  T Imoto 《Biochemistry》1987,26(7):1838-1845
Nuclear magnetic resonance analyses have been made of the individual hydrogen-deuterium exchange rates of tryptophan indole N-1 hydrogens in native lysozyme and its chemically modified derivatives including lysozyme with an ester cross-linkage between Glu-35 and Trp-108, lysozyme with an internal amide cross-linking between the epsilon-amino group of Lys-13 and the alpha-carboxyl group of Leu-129, and lysozyme with the beta-aspartyl sequence at Asp-101. The pH dependence curves of the exchange rates for Trp-63 and Trp-108 are different from those expected for tryptophan. The pH dependence curve for Trp-108 exchange exhibits the effects from molecular aggregation at pH above 5 and from a transition between the two conformational fluctuations at around pH 4. The exchange rates for tryptophan residues in native lysozyme and modified derivatives are not correlated with the thermodynamic or kinetic parameters in protein denaturation, suggesting that the fluctuations responsible for the exchange are not global ones. The exchange rates for tryptophan residues remote from the modification site are perturbed. Such tryptophan residues are found to be involved in a small but distinct conformational change due to the modification. Therefore, the perturbations of the N-1 hydrogen exchange rates are related to the minor change in local conformation or in conformational strain induced by the chemical modification.  相似文献   

14.
The solution structure of a recombinant tissue-type plasminogen activator kringle 2 domain, complexed with the antifibrinolytic drug 6-aminohexanoic acid (6-AHA) was determined via 1H nuclear magnetic resonance spectroscopy and dynamical simulated annealing calculations. The structure determination is based on 610 intramolecular kringle 2 and 14 intermolecular kringle 2-6-AHA interproton distance restraints, as well as on 82 torsion angle restraints. Three sets of simulated annealing structures were computed from three different classes of starting structures: (1) random conformations devoid of disulfide bridges; (2) random conformations that contain correct disulfide bonds; and (3) a folded conformation modeled after the homologous prothrombin kringle 1 X-ray crystallographic structure. All three sets of structures are well defined, with averaged atomic root-mean-square deviations between individual structures and mean set structures of 0.77, 0.99 and 0.70 A for backbone atoms, and 1.36, 1.55 and 1.41 A for all atoms, respectively. Kringle 2 is an oblate ellipsoid with overall dimensions of approximately 34 A x 30 A x 17 A. It exhibits a compact globular conformation characterized by a number of turns and loop elements as well as by one right-handed alpha-helix and five (1 extended and 4 rudimentary) antiparallel beta-sheets. The extended beta-sheet exhibits a right-handed twist. Close van der Waals' contacts between the Cys22-Cys63 and Cys51-Cys75 disulfide bridges and the central hydrophobic core composed of the Trp25, Leu46, His48a and Trp62 side-chains are among the distinguishing features of the kringle 2 fold. The binding site for 6-AHA appears as a rather exposed cleft with a negatively charged locus defined by the Asp55 and Asp57 side-chains, and with an aromatic pocket structured by the Tyr36, Trp62, His64 and Trp72 side-chains. The Trp62 and His64 rings line the back surface of the pocket, while the Tyr36 and Trp72 rings confine it from two sides. The Trp62 and Trp72 indole rings conform a V-shaped groove. The methyl groups of Val35 also contribute lipophilic character to the ligand-interacting surface. It is suggested that the positively charged side-chains of Lys34 and, potentially, Arg69 may favor interactions with the carboxylate group of the ligand. The Trp25 and Tyr74 aromatic rings, although conserved elements of the binding site structure, seem not to undergo direct contacts with the ligand.  相似文献   

15.
The importance of van der Waals contact between Glu 35 and Trp 109 to the active-site structure and the catalytic properties of human lysozyme (HL) has been investigated by site-directed mutagenesis. The X-ray analysis of mutant HLs revealed that both the replacement of Glu 35 by Asp or Ala, and the replacement of Trp 109 by Phe or Ala resulted in a significant but localized change in the active-site cleft geometry. A prominent movement of the backbone structure was detected in the region of residues 110 to 120 and in the region of residues 100 to 115 for the mutations concerning Glu 35 and Trp 109, respectively. Accompanied by the displacement of the main-chain atoms with a maximal deviation of C alpha atom position ranging from 0.7 A to 1.0 A, the mutant HLs showed a remarkable change in the catalytic properties against Micrococcus luteus cell substrate as compared with native HL. Although the replacement of Glu 35 by Ala completely abolished the lytic activity, HL-Asp 35 mutant retained a weak but a certain lytic activity, showing the possible involvement of the side-chain carboxylate group of Asp 35 in the catalytic action. The kinetic consequence derived from the replacement of Trp 109 by Phe or Ala together with the result of the structural change suggested that the structural detail of the cleft lobe composed of the residues 100 to 115 centered at Ala 108 was responsible for the turnover in the reaction of HL against the bacterial cell wall substrate. The results revealed that the van der Waals contact between Glu 35 and Trp 109 was an essential determinant in the catalytic action of HL.  相似文献   

16.
The structure of a derivative of hen egg-white lysozyme (EC 3.2.1.17) modified by N-bromosuccinimide at Trp62 has been studied by both 1H nuclear magnetic resonance spectroscopy and X-ray crystallography. It was shown that this modification, changing the tryptophan residue to an oxindolealanine2 residue, only causes minor structural changes at the site of the modification, and that the overall structure of the native enzyme is maintained in the derivative. Both diastereomers of the oxindolealanine-62 lysozyme were observed by the two methods employed, in accordance with previous observations (Norton & Allerhand, 1976). The pK values of the catalytically important carboxyl groups of Glu35 and Asp52 were identical in the native enzyme and its derivative. However, the modified enzyme is virtually inactive in the hydrolysis of the cell-wall mucopolysaccharide of Micrococcus lysodeikticus. The binding of N-acetylglucosamine oligosaccharides to both native lysozyme and Ox-62 lysozyme was studied by nuclear magnetic resonance spectroscopy, observing the perturbations on the lysozyme 1H n.m.r. resonances, and differences in the perturbations of the two systems demonstrated that binding of (GlcNAc)3 in particular was not identical in the two systems. The structure of Ox-62 lysozyme-(GlcNAc)3 was studied by X-ray crystallography and it was shown that only two GlcNAc residues make contact with the enzyme, binding the reducing end residue in a similar mode as the α-anomeric form of GlcNAc binds to the native enzyme (Blake et al., 1967a). On the basis of the results obtained by X-ray crystallography and 1H n.m.r. spectroscopy, the lack of enzymatic activity of the Ox-62 lysozyme arises from the obstruction by the oxindolealanine residue of sub-site B of the active site, preventing productive binding of the substrate.  相似文献   

17.
In the hydrolytic reaction catalyzed by an endoglucanase from a Bacillus strain (endoglucanase K), 2 of 12 Trp residues, Trp174 and Trp243, are responsible for binding of the substrate and/or for the catalysis (Kawaminami, S., Ozaki, K., Sumitomo, N., Hayashi, Y., Ito, S., Shimada, I., and Arata, Y. (1994) J. Biol. Chem. 269, 28752-28756). Here we report results of a stable isotope-aided NMR analysis of the active site of endoglucanase K, using Trp174 and Trp243 as structural probes. Hydrogen-deuterium exchange experiments performed for the NH protons of main and side chains of Trp residues revealed that Trp174 and Trp243 are located in the hydrophilic and hydrophobic microenvironments in the active site, respectively. We also carried out pH titration experiments for indole C2 proton resonances of Trp residues and measured the pH dependence of specific activities for wild-type endoglucanase K and its mutants in which Glu or Asp residues are replaced with their respective amide forms. On the basis of the results obtained from the present study, we conclude that (a) Glu130 and Asp191, which are in spatial proximity to Trp174 and Trp243 in the active site, play a crucial role in the enzymatic activity; (b) Glu130 and Asp191 interact with each other in the active site, leading to an increase in the pKa values to 5.5 for both amino acid residues; and (c) the pKa values of Glu130 and Asp191 would lead to an unusually narrow pH-activity profile of the endoglucanase K.  相似文献   

18.
Trp108 of chicken lysozyme is in van der Waals contact with Glu35, one of two catalytic carboxyl groups. The role of Trp108 in lysozyme function and stability was investigated by using mutant lysozymes secreted from yeast. By the replacement of Trp108 with less hydrophobic residues, Tyr (W108Y lysozyme) and Gln (W108Q lysozyme), the activity, saccharide binding ability, stability, and pKa of Glu35 were all decreased with a decrease in the hydrophobicity of residue 108. Namely, at pH 5.5 and 40 degrees C, the activities of W108Y and W108Q lysozymes against glycol chitin were 17.3 and 1.6% of that of wild-type lysozyme, and their dissociation constants for the binding of a trimer of N-acetyl-D-glucosamine were 7.4 and 309 times larger than that of wild-type lysozyme, respectively. For the reversible unfolding at pH 3.5 and 30 degrees C, W108Y and W108Q lysozymes were less stable than wild-type lysozyme by 1.4 and 3.6 kcal/mol, respectively. As for the pKa of Glu35, the values for W108Y and W108Q lysozymes were found to be lower than that for wild-type lysozyme by 0.2 and by 0.6 pKa unit, respectively. The pKa of Glu35 in lysozyme was also decreased from 6.1 to 5.4 by the presence of 1-3 M guanidine hydrochloride, or to 5.5 by the substitution of Asn for Asp52, another catalytic carboxyl group. Thus, both the hydrophobicity of Trp108 and the electrostatic interaction with Asp52 are equally responsible for the abnormally high pKa (6.1) of Glu35, compared with that (4.4) of a normal glutamic acid residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr182 in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr182 was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr182 significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.  相似文献   

20.
The molecular model of Lycopersicon esculentum (tomato) pectin methylesterase (PME) was built by using the X-ray crystal structure of PME from the phytopathogenic bacterium Erwinia chrysanthemi as a template. The overall structure and the position of catalytically important residues (Asp132, Asp 153, and Arg 221, located at the bottom of the active site cleft) are conserved. Instead, loop regions forming the walls of the catalytic site are much shorter and form a less deep cleft, as already revealed by the carrot PME crystal structure. The protein inhibitor of pectin methylesterase (PMEI) isolated from kiwi fruit binds tomato PME with high affinity. Conversely, no complex formation between the inhibitor and PME from E. chrysanthemi is observed, and the activity of this enzyme is unaffected by the presence of the inhibitor. Fluorescence quenching experiments on tomato PME and on PME-PMEI complex suggest that tryptophanyl residues present in the active site region are involved in the interaction and that the inhibitor interacts with plant PME at the level of the active site. We also suggest that the more open active site cleft of tomato PME allows the interaction with the inhibitor. Conversely, the narrow and deep cleft of the active site of E. chrysanthemi PME hinders this interaction. The pH-dependent changes in fluorescence emission intensity observed in tomato PME could arise as the result of protonation of an Asp residue with unusually high pKa, thus supporting the hypothesis that Asp132 acts as acid/base in the catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号