首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
皮肤是人体最大的器官,也为药物的递送提供了重要途径。经皮给药是药物以皮肤为媒介,透过皮肤吸收的途径。因此,皮肤角质层是经皮给药的最大限速障碍。纳米经皮给药系统,具有提高透皮效率、缓释性、避免药物肝首过效应、减少副作用等优点,是通过纳米制剂与皮肤组织之间的相互作用实现的。其中,纳米制剂的结构和组分与其发挥皮肤促渗效用密切相关。对纳米制剂与皮肤质构效关系深入透彻的了解,有助于新型透皮纳米制剂的设计,并利用综合手段构建安全、高效、实用的经皮给药系统。  相似文献   

2.
类风湿关节炎(RA)是全世界难治性自身免疫疾病,其治疗药物虽不断发展,但病灶药物浓度达不到有效水平导致药物疗效不理想或存在各种毒副反应,因此,基于新技术、新方法研究开发针对RA的安全、高效新型制剂是必要的.研究表明,纳米技术的运用可提高药物生物利用度,经皮给药可改善口服和注射带来的毒副作用.对近年来基于经皮给药系统治疗...  相似文献   

3.
载药脂质体的研究与应用进展   总被引:2,自引:1,他引:1  
载药脂质体给药系统已成为国内外的研究热点。传统脂质体经修饰和改良后表现出良好的生物相容性,缓释性和靶向性。新型脂质体在经皮给药,肺部给药,脑部靶向治疗,基因治疗等方面的应用研究结果显示,集药物缓释、靶向于一体的具有良好生物安全性的脂质体给药系统具有很大发展潜力。本文综述了该领域中的最新研究进展。  相似文献   

4.
生物大分子及纳米药物,比如,亚单位疫苗、DNA疫苗、以及针对真皮层的治疗药物,作为近年来新兴的治疗药物,在有些治疗领域有着透皮给药的需求。由于具有靶向性高,疗效显著等特点,生物大分子及纳米药物逐渐成为新的研究热点。微针作为一种新型的给药技术,不仅具有无痛、给药方便等优点,而且运用物理手段可大幅提高大分子甚至纳米药物的透皮吸收及皮层靶向,能够避过胃肠道消化作用以及肝脏首过效用。将微针技术与生物大分子药物相结合,能够同时发挥两者的优势,实现高靶向生物药物的无痛给药。本文简述微针透皮给药技术、以及生物大分子给药的研究进展,对微针技术用于生物大分子及纳米药物透皮给药的尝试研究做了介绍和总结,对存在的技术挑战进行了分析和展望。  相似文献   

5.
生物大分子药物难以跨过皮肤的角质层屏障,而微针作为一种微创、无痛、高效的经皮给药方式,能有效破解大分子药物透皮速率和吸收量低下的难题.本文详细综述了微针阵列技术在各类生物大分子药物经皮递送中的应用进展,包括单独微针阵列(固体实心微针、空心微针、涂层微针和可溶性微针)以及微针与其他制剂技术(如微粒给药系统)、医疗器械和智能释药系统等结合对大分子药物的促渗作用和控释作用.同时对微针用于大分子药物递送领域目前面临的问题、发展前景等作出分析.  相似文献   

6.
本文在研究制备了包载10,11-亚甲二氧基喜树碱(MD-CPT)的透明质酸纳米乳(HANs)经皮给药系统的基础上,进一步研究了载MD-CPT透明质酸纳米乳的细胞吞噬,并进行了体内药代动力学分析.通过优化制备条件,得到了皮肤渗透性良好的缓释剂型.从CLSM观察到药物被细胞摄入并传递入细胞核,同时,载药纳米乳的细胞吞噬效率呈时间依赖性,不同细胞株HSF、HUVES、MCF-7、KF的细胞吞噬率略有不同.用Rhodanmine B标记HANs,通过荧光显微镜观察到载药纳米乳透过角质层到达真皮层的拟动态过程.利用HPLC检测MD-CPT血药浓度,测得经皮给药半衰期T1/2是静脉注射的3.6倍,肌肉注射的1.6倍,体内药物滞留时间显著增加;血药浓度峰谷值差异小,曲线平缓,说明经皮给药能保证血药浓度呈现可控的持续性.最终通过活体成像系统和组织切片荧光显微镜,直观地反映出经皮给药后药物在大鼠体内的分布情况和各组织器官药物含量,确定载药纳米乳主要采取胞间渗透的扩散方式,在局部给药的区域滞留时间较长,有利于对浅表性的病灶区持续给药,延长药效,而剩余的MD-CPT和解离的HANs都进入了血液循环,最终通过新陈代谢被排出体外.为无创型HANs经皮给药系统应用于浅表性肿瘤治疗提供了理论基础.  相似文献   

7.
气泡微针作为一种新型的经皮递药技术,可以实现无痛精确给药,引起了研究者极大的关注。为了提高微针携带药物的利用率,本文提出了一种尖端载药气泡可溶性微针的制备方法。在微针成型过程中将气泡形成于针体内,药物集中到微针顶端。重点研究了气泡微针的制备优化工艺,并探究了起泡剂浓度、干燥温度、溶液黏度对气泡微针成型效果的影响,同时对其透皮效果进行了分析。实验结果表明,气泡微针成型工艺稳定,成型率在90%以上,同时将成型周期缩短至4 h左右。药物主要集中在微针针尖,高度在180μm,气泡的高度在250μm,且该微针阵列能够在小鼠皮肤上打出微通道,微针的针体能够在5min内迅速溶解。透皮扩散实验表明,气泡微针能够在1 min内迅速释放约48%的药物,5 min内共释放约91%的药物。微针阵列的气泡微结构能够阻碍药物向基底的扩散,有效提高了药物的利用率,为微针透皮给药的实际应用提供了一定技术依据。  相似文献   

8.
以经皮给药系统的开发及产业化为主体思路,在对经皮给药系统发展现状认识的基础上,重点对经皮给药产品研发中的吸收模型 及体内外相关性评价研究、产业化设备、国内外研发模式等进行初步探讨,分析经皮给药系统开发中存在的问题和挑战并提出相应的解 决方案,以期为今后国内经皮给药制剂的发展提供思路。  相似文献   

9.
生物可降解嵌段共聚物在给药载体中的应用   总被引:3,自引:0,他引:3  
生物可降解嵌段聚合物因具有双亲性 ,靶向药物到特定部位等优点大大推动了作为给药载体系统的发展。本文综述了生物可降解嵌段聚合物在表面修饰、水凝胶、胶束、生物大分子载体系统中的应用  相似文献   

10.
目的:为了进一步探究妇产科专业给药系统的发展和应用前景。方法:根据我院2013年1月-2015年1月所收治的420例妇产科患者的临床治疗资料,采用随机分组方式将全部患者分为治疗组(妇产科专用给药系统)和对照组(常规给药),每组各有患者210人。对比两组患者的治疗效果以及日常给药工作的相关问题。结果:对比两组患者的治疗效果、给药问题、患者满意度,治疗组明显优于对照组,其对比结果具有显著的统计学差异性(P0.05)。结论:妇产科专业给药系统能够显著提升临床治疗效果和生产质量,而科技化、专业化、多功能则是妇产科专业给药系统的发展方向,并且具有良好的临床使用前景,应于临床重点推广。  相似文献   

11.
Summary and Conclusions  The present work aimed to characterize transdermal drug delivery systems of pinacidil monohydrate in vivo by monitoring the effect of the TDDS on blood pressure of methyl prednisolone acetate induced hypertensive rats. The blood pressure of rats was measured using a noninvasive rat BP instrument based on cuff tail technique. A significant fall in rat BP (P<.01) was observed in treatment of hypertensive rats with all the formulations, which was maintained for 48 hours. Interformulation comparison revealed that formulation B-4 was the most effective with 37.96% reduction in BP (160.33±4.96 vs 99.44±4.46 mmHg). It was concluded that a single patch application of pinacidil TDDS (B-4) can effectively control hypertension in rats for 2 days. The system holds promise for clinical studies. Publised: January 13, 2006  相似文献   

12.
Bupranolol is a promising candidate for transdermal drug delivery system (TDDS) development. The effect of permeation enhancers on the in vivo delivery and beta-blocking effect of reservoir type TDDS was studied in comparison with intravenous BPL in rabbits. The beta-blocking effect was quantified by measuring the inhibition of isoprenaline induced tachycardia in rabbits after BPL administration via transdermal and intravenous routes. The reservoir type TDDS containing a hydroxypropyl cellulose gel and polyethylene membrane was used as a control device. In comparison, the TDDS containing skin penetration enhancers, either 2-pyrrolidone or partially methylated beta cyclodextrin (PMbetaCD) were evaluated. The control device (no enhancer) produced about 52% inhibition of isoprenaline induced tachycardia at 2 h and the effect continued over 24 h application period, however, the devices with 2-pyrolidone or PMbetaCD produced about 85% inhibition of isoprenaline induced tachycardia at 3 h and the same effect continued over 24 h application period. Likewise, the AUC of these devices were significantly higher than that of control device. The intravenous bupranolol showed rapid decline in the pharmacodynamic effect with time indicating its rapid elimination. The in vivo delivery of bupranolol (as estimated by a mass balance study) from the devices made with pyrolidone or PMbetaCD was 3-fold higher than that of control. The results of this study strongly suggest that the penetration enhancers in the TDDS increased the in vivo delivery of BPL, thereby increased the beta-blocking activity of BPL by 50-60% higher than control, enabling the reduction of the TDDS patch size, accordingly.  相似文献   

13.
The application of nanotechnology in medicine, known as nanomedicine, has introduced a plethora of nanoparticles of variable chemistry and design considerations for cancer diagnosis and treatment. One of the most important field is the design and development of pharmaceutical drugs, based on targeted drug delivery system (TDDS). Being inspired by physio-chemical properties of nanoparticles, TDDS are designed to safely reach their targets and specifically release their cargo at the site of disease for enhanced therapeutic effects, thereby increasing the drug tissue bioavailability. Nanoparticles have the advantage of targeting cancer by simply being accumulated and entrapped in cancer cells. However, even after rapid growth of nanotechnology in nanomedicine, designing an effective targeted drug delivery system is still a challenging task. In this review, we reveal the recent advances in drug delivery approach with a particular focus on gold nanoparticles. We seek to expound on how these nanomaterials communicate in the complex environment to reach the target site, and how to design the effective TDDS for complex environments and simultaneously monitor the toxicity on the basis of designing such delivery complexes. Hence, this review will shed light on the research, opportunities and challenges for engineering nanomaterials with cancer biology and medicine to develop effective TDDS for treatment of cancer.  相似文献   

14.
The stability of bioreductive drug delivery systems (TDDS) was monitored at various pH values and in the presence of glutathione (GSH). Results suggest that steric hindrance due to conformational constraint in TDDS led to an increase in stability of TDDS toward nucleophilic degradation under aqueous conditions. The electronic properties of substituents influenced TDDS stability at different pH values and in the presence of GSH.  相似文献   

15.
By derivatization at the N-terminus of amino acid-based anticancer agents (e.g. melphalan and acivicin) to form a drug delivery system (TDDS), we demonstrate a change in the mechanism of brain uptake from the large neutral amino acid transporter (LAT) pathway to passive. An in situ rat brain perfusion technique was used to determine the brain capillary permeability-surface area (PA) product for [(14)C]L-Leu as control (5.18 +/- 0.32 x 10(-2) mL/s/g), which was inhibited competitively (to 7-18% of control) by an excess concentration of the amino-acid-containing anticancer agents, acivicin and melphalan. However, TDDS did not compete for LAT-mediated brain uptake of the radiotracer [(14)C]L-Leu. Brain uptake of TDDS was determined after in situ brain perfusion followed by RP-HPLC along with LC-MS/MS detection of the analytes in brain samples. The PA product for CH(3)-TDDS containing melphalan (5.09 +/- 2.0 x 10(-2) mL/s/g) shows that these agents rapidly cross the blood-brain barrier. Furthermore, competition studies of CH(3)-TDDS with [(3)H]verapamil suggest that the TDDS interacts significantly with the multidrug resistant efflux system (P-glycoprotein) at the blood-brain barrier. Therefore, TDDS were shown to lack LAT-mediated brain uptake. The drug delivery systems, however, showed uptake predominantly via the passive route along with recognition by the multidrug resistant efflux protein at the cerebrovasculature.  相似文献   

16.
Time Domain Dielectric Spectroscopy (TDDS) provides a useful method for monitoring the physiological state of a biological system which may be changing with time. A voltage step is applied to a sample and the Fourier Transform of the resulting current yields the variations of the conductance, capacitance and dielectric loss of the sample with frequency (dielectric spectrum). An important question is whether the application of the voltage step itself can produce changes which obscure those of interest.Long term monitoring of the dielectric properties of plant stems requires the use of needle electrodes with relatively large current densities and field strengths at the electrode-stem interface. Steady currents on the order of those used in TDDS have been observed to modify the distribution of plant growth hormones, to produce wounding at electrode sites, and to cause stem collapse. This paper presents the preliminary results of an investigation into the effects of the application of voltage steps on the observed dielectric spectrum of the stem of the plant Coleus.  相似文献   

17.
In this study, some single-layer and double-layer transdermal drug delivery systems (TDDSs) with different functional and non-functional acrylic pressure-sensitive adhesives (PSAs) were prepared. For this purpose, fentanyl as a drug was used. The effects of PSAs type, single-layer and double-layer TDDSs on skin permeation and in vitro drug release from devices were evaluated using a hydrodynamically well-characterized Chien permeation system fitted with excised rat abdominal skin. The adhesion properties of devices such as peel strength and tack values were obtained as well. It was found that TDDS with –COOH functional PSA showed the lowest steady-state flux. Double-layer TDDS displayed a constant flux up to 72 h. In double- and single-layer devices after 1 and 3 h, respectively, drug release followed Higuchi’s kinetic model. Formulations with the highest percentage of –COOH functional PSA have displayed the lowest flux. The double-layer TDDSs with non-functional PSA demonstrated the suitable skin permeation rate close to Duragesic® TDDS and suitable adhesion properties.  相似文献   

18.
The dielectric properties of the Tobacco Mosaic Virus (TMV) have been measured using time domain dielectric spectroscopy (TDDS) in the temperature range from 1 to 40 degrees C. A single dielectric dispersion is observed in the MHz range. The activation energy of the process is found to be in the range 1-2 kcal/mol. The experimental data could not be completely accounted for by current theoretical models, but evidence indicates that the dielectric loss arises from polarisation of charge on and around the virus.  相似文献   

19.
目的:在胰岛索非注射给药研究中,经皮给药系统凭借其独特的优势,已成为近年来医药领域的研发重点。控释膜的研究是经皮给药系统中一个重要组成部分,然而涉及胰岛素通过控释膜释放的研究报道不多。本实验室通过紫外光催化技术合成出一种丙烯酸酯-PEG复合薄膜作为胰岛素控释膜。本实验目的在于考察该复合薄膜在24小时内对胰岛素的体外控释作用,从而为胰岛素经皮给药制剂的基础研究作出贡献。方法:通过紫外光固化方法合成丙烯酸酯-PEG400复合薄膜,通过HPLC的方法考察丙烯酸酯-PEG400复合薄膜对不同浓度胰岛素溶液的控释作用,通过比较薄膜对不同浓度胰岛素溶液的累积渗透量及渗透速率等参数,研究薄膜对胰岛索的控释规律。结果:实验数据显示:丙烯酸酯-PEG复合薄膜对3.0mg/mL,6.0mg/mL,9.0mg/mL这三种不同浓度胰岛素控释曲线的相关因子分别为:0.9921,0.9950,0.9964。相关因子均大于0.99,表明该薄膜能很好的控制胰岛素溶液实现线性释放。经计算,薄膜对3.0mg/mL,6.0mg/mL,9.0mg/mL这三种浓度胰岛素的累积渗透量分别为:266.69μg/cm-2,343.65μg/cm-2,460.10μg/cm2。渗透速率分别为:9.24μg/cm-2·h-1,13.40μg/cm-2·h-1,19.04μg/cm-2·h-1。以上两组数据表明,薄膜对胰岛素的累积渗透量及渗透速率随胰岛素浓度的增加而增大。结论:通过实验结果我们可以看出,丙烯酸酯一PEG复合薄膜能控制不同浓度的胰岛素溶液以恒定速率释放,通过对比薄膜对各浓度胰岛素的累积渗透量及渗透速率等参数,发现该薄膜对胰岛素的释放速率受胰岛素浓度调节,具体表现为随胰岛素浓度的增加而增加。因此该薄膜不仅可以稳定控制胰岛素实现零级释放,而且可以通过调节胰岛素浓度实现调节胰岛素释放速率的目的。由此可以看出,该薄膜是一种理想的胰岛素控释膜。同时本实验作为胰岛素控释膜的基础研究,也为日后以该薄膜为控释膜的胰岛素经皮给药制剂的研发打下了坚实的基础。  相似文献   

20.
In this study, six N‐1, N‐2, or N‐11 derivatives of TD‐34 (a cationic cyclic cell‐penetrating peptide [CPP], ACSSKKSKHCG) were designed and synthesized including both linear peptides and cyclic peptides, such as DL‐1 (KWSSKKSKHCG), DLCC‐1 (cyclopeptide, KWSSKKSKHCG), DL‐2 (KWSSKKSKHCG‐NH2), DLCC‐2 (cyclopeptide, KWSSKKSKHCG‐NH2), DL‐3 (RWSSKKSKHCG), and DLCC‐3 (cyclopeptide, RWSSKKSKHCG). The cyclic peptides were synthesized by disulfide bound linkages formed by N‐2 and N‐10 cysteine. In vitro penetration experiment was conducted to investigate the transdermal enhancement ability of these derivatives, using triptolide (TP) as model drug. The results display that at the presence of DLCC‐2, the accumulative penetration amount of TP increased 1.71‐fold (P < .05) within 12 hours, displaying better transdermal enhancing ability than TD‐34. Meanwhile, DL‐3 and DLCC‐3 slightly decreased the transdermal delivery of TP, and the presence of DL‐1 and DLCC‐1 shows no obvious effect. In order to clarify the factors on the transdermal ability of peptides, the solubility of TP in phosphate buffer saline (PBS) at the presence of different peptides and the mechanism of transdermal delivery of CPPs was investigated. The result shows that most of these peptides have no significant effect on the solubility of TP except DLCC‐3 (the solubility of TP slightly increased). And in order to investigate transdermal absorption route of DLCC‐2, polyarginine linked to rhodamine b (Rh b) derivative is used. The result proved that the transdermal route of polyarginine is via hair follicle, which may change the transdermal route of its cargo molecule (TP). Our group previously proved that polyarginine and TD‐34 have similar transdermal enhancing mechanism (changing the transdermal route of their cargo molecule); it is reasonably speculated that the transdermal route of DLCC‐2 is the same as polyarginine and then changes the transdermal absorption route of TP. Furthermore, such results have laid a solid foundation for further investigation of CPPs and paved a way for both designing and synthesizing of new drug delivery system for therapy molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号