首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis, becomes upregulated during cell proliferation and transformation. Here we show that intact ODC activity is needed for the acquisition of a transformed phenotype in rat 2R cells infected with a temperature-sensitive mutant of Rous sarcoma virus. Addition of the ODC inhibitor alpha-difluoromethyl ornithine (DFMO) to the cells (in polyamine-free medium) before shift to permissive temperature prevented the depolymerization of filamentous actin and morphological transformation. Polyamine supplementation restored the transforming potential of pp60v-src. DFMO did not interfere with the expression of pp60v-src or its in vitro tyrosine kinase activity. The tyrosine phosphorylation of most cellular proteins, including ras GAP, did not either display clear temperature- or DFMO-sensitive changes. A marked increase was, however, observed in the tyrosine phosphorylation of phosphatidylinositol 3-kinase and proteins of 33 and 36 kD upon the temperature shift, and these hyperphosphorylations were partially inhibited by DFMO. A DFMO-sensitive increase was also found in the total phosphorylation of calpactins I and II. The well-documented association of GAP with the phosphotyrosine-containing proteins p190 and p62 did not correlate with transformation, but a novel 42-kD tyrosine phosphorylated protein was complexed with GAP in a polyamine- and transformation-dependent manner. Further, tyrosine phosphorylated proteins of 130, 80/85, and 36 kD were found to coimmunoprecipitate with pp60v-src in a transformation-related manner. Altogether, this model offers a tool for sorting out the protein phosphorylations and associations critical for the transformed phenotype triggered by pp60v- src, and implicates a pivotal role for polyamines in cell transformation.  相似文献   

2.
Overexpression of the full-length GTPase-activating protein (GAP) has recently been shown to suppress c-ras transformation of NIH 3T3 cells but not v-ras transformation (36). Here, we show that focus formation induced by c-src was inhibited by approximately 80% when cotransfected with a plasmid encoding full-length GAP. In a similar assay, focus formation by the activated c-src (Tyr-527 to Phe) gene was inhibited by 33%. Cotransfection of the GAP C terminus coding sequences (which encode the GTPase-accelerating domain) with c-src or c-src527F inhibited transformation more efficiently than did the full-length GAP, while the GAP N terminus coding sequences had no effect on src transformation. When cells transformed by c-ras, c-src, c-src527F, or v-src were transfected with GAP or the GAP C terminus sequence in the presence of a selectable marker, 40 to 85% of the resistant colonies were found to be morphologically revertant. The GAP C terminus induced reversion of each src-transformed cell line more efficiently than the full-length GAP, but this was not the case for reversion of c-ras transformation. Biochemical analysis of v-src revertant subclones showed that the reversion correlated with overexpression of full-length GAP or the GAP C terminus. There was no decrease in the level of pp60src expression or the level of protein-tyrosine phosphorylation in vivo. We conclude that GAP can suppress transformation by src via inhibition of endogenous ras activity, without inhibiting in vivo tyrosine phosphorylation of cellular proteins induced by pp60src, and that src may negatively regulate GAP's inhibitory action on endogenous ras.  相似文献   

3.
dlPA105 is a spontaneous variant of Rous sarcoma virus, subgroup E, which carries a deletion in the N-terminal portion of the v-src gene coding sequence. This virus was isolated on the basis of its ability to induce proliferation of quiescent quail neuroretina cells. The altered v-src gene encodes a phosphoprotein of 45,000 daltons which possesses tyrosine kinase activity. DNA sequencing of the mutant v-src gene has shown that deletion extends from amino acid 33 to 126 of wild-type p60v-src. We investigated the tumorigenic and transforming properties of this mutant virus. dlPA105 induced fibrosarcomas in quails with an incidence identical to that induced by wild-type virus. Quail neuroretina cells infected with the mutant virus were morphologically transformed and formed colonies in soft agar. In contrast, dlPA105 induced only limited morphological alterations in quail fibroblasts and was defective in promoting anchorage-independent growth of these cells. Synthesis and tyrosine kinase activity of the mutant p45v-src were similar in both cell types. These data indicate that the portion of the v-src protein deleted in p45v-src is dispensable for the mitogenic and tumorigenic properties of wild-type p60v-src, whereas it is required for in vitro transformation of fibroblasts. The ability of dlPA105 to induce different transformation phenotypes in quail fibroblasts and quail neuroretina cells is a property unique to this Rous sarcoma virus mutant and provides evidence for the existence of cell-type-specific response to v-src proteins.  相似文献   

4.
Host range mutants of Schmidt-Ruppin v-src that transform chicken embryo fibroblasts (CEF) but not Rat-2 cells were generated previously by linker insertion-deletion mutagenesis (J. E. DeClue and G. S. Martin, J. Virol. 63:542-554, 1989). One of these mutants, SRX5, in which Tyr-416 is substituted by the sequence Ser Arg Asp, retained high levels of kinase activity in vitro and in vivo, both in CEF and in Rat-2 cells. Phosphorylation of p36 (the calpactin I heavy chain) was drastically reduced in cells expressing SRX5 src, suggesting that the phenotype of SRX5 results from an alteration in substrate recognition by the src kinase. Three mutants, SPX1, SHX13, and XD6, containing linker insertions or small deletions within the src homology 2 (SH2) region, induced reduced levels of kinase activity in both CEF and Rat-2 cells. However, the residual levels of kinase activity in Rat-2 cells were above the threshold at which wild-type pp60v-src transforms Rat-2 cells, indicating that the reduction in kinase activity was not sufficient to account for the failure to transform. Cells infected by these mutants exhibited reduced levels of phosphorylation of 120- and 62-kDa proteins. We have reported elsewhere (M. F. Moran, C. A. Koch, D. Anderson, C. Ellis, L. England, G. S. Martin, and T. Pawson, Proc. Natl. Acad. Sci. USA 87:8622-8626, 1990) that ras GTPase-activating protein GAP and associated protein p62 are not tyrosine phosphorylated in Rat-2 cells expressing SHX13 or XD6. The transformation defect in Rat-2 cells may result from the failure to phosphorylate those proteins. The fifth mutant, XD4, contains a deletion which removes all of the src homology 3 (SH3) and most of the SH2 sequences of src. The protein encoded by XD4 is active as a kinase when expressed in CEF, indicating that in CEF the SH2 and SH3 regions of v-src are not necessary for kinase activity and transformation. The XD4 src product is not tyrosine phosphorylated and is inactive as a kinase when expressed in Rat-2 cells. Thus, host cell factors can affect the tyrosine phosphorylation and activity of the v-src kinase in the absence of the SH2 and SH3 regions. These results indicate that the host-dependent transformation phenotype results from alterations in src kinase activity and substrate specificity.  相似文献   

5.
Ras GTPase activating protein (GAP) possesses a C-terminal domain that interacts with GTP-bound Ras, and an N-terminal region containing two SH2 domains and an SH3 domain. In addition to its association with Ras, GAP binds stably to autophosphorylated beta PDGF receptors, and to two cytoplasmic phosphoproteins: p62, an RNA binding protein, and p190, which possesses GAP activity towards small guanine nucleotide binding proteins in the Rho/Rac family. To define the region of GAP that mediates these interactions with cellular phosphoproteins, and to investigate the biological significance of these complexes, a truncated GAP polypeptide (GAP-N) containing residues 1-445 was stably expressed in Rat-2 fibroblasts. GAP-N contains the SH2 and SH3 domains, but lacks the Ras GTPase activating domain. Stimulation of cells expressing GAP-N with PDGF induced association of GAP-N with the beta PDGF receptor, and phosphorylation of GAP-N on tyrosine, consistent with the notion that GAP SH2 domains direct binding to the autophosphorylated beta PDGF receptor in vivo. GAP-N bound constitutively to p190 in both serum-deprived and growth factor-stimulated cells. This GAP-N-p190 complex had Rho GAP activity in vitro. The expression of GAP-N in Rat-2 cells correlated with changes in the cytoskeleton and in cell adhesion, typified by the disruption of action stress fibres, a reduction in focal contacts, and an impaired ability to adhere to fibronectin. These results suggest that the N-terminal domain of GAP can direct interactions with cellular phosphoproteins in vivo, and thereby exert an effector function which modulates the cytoskeleton and cell adhesion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Tyrosine-specific phosphorylation of cellular proteins has been implicated in the neoplastic transformation of cells by Rous sarcoma virus (RSV). One of the putative substrates for the src gene product (pp60v-src) of RSV is the cytoskeletal protein vinculin, giving rise to the hypothesis that tyrosine-specific phosphorylation of vinculin disrupts adhesion plaque integrity, leading to the characteristic rounded morphology of RSV-transformed cells. We have investigated this hypothesis by analysing the properties of fibroblasts transformed by conditional and non-conditional mutants of RSV which confer different morphologies on infected cells, with respect to formation of microfilament bundles, formation of vinculin-containing adhesion plaques, the deposition of a fibronectin-containing extracellular matrix, the localization of pp60v-src and the tyrosine-specific phosphorylation of vinculin. Cells transformed by the temperature-sensitive (ts) RSV mutant LA32 cultured at 41 degrees C were morphologically normal, and contained prominent microfilament bundles and well-developed adhesion plaques. However, these cells had a fully active pp60v-src kinase, had pp60v-src concentrated in their adhesion plaques and contained vinculin which was heavily phosphorylated on tyrosine residues. Cells transformed by a recovered avian sarcoma virus, rASV 2234.3 exhibited a markedly fusiform morphology with pp60v-src concentrated in well-developed adhesion plaques and an elevation of the phosphotyrosine content of vinculin. Cells transformed by LA32 at restrictive temperature comprise morphologically normal cells, indistinguishable from untransformed CEF, yet which contain tyrosine-phosphorylated vinculin and suggest that neither tyrosine-specific phosphorylation of vinculin nor pp60v-src concentration in adhesion plaques is sufficient for the rounded morphology of RSV-transformed cells.  相似文献   

7.
A mutant in src, the oncogene of Rous sarcoma virus, has been constructed in which the major phosphorylated tyrosine (Tyr-416, located in the carboxy-terminal half of the protein) has been replaced by phenylalanine. Mouse cells transformed with this mutant src form foci and grow in soft agar, indicative of a transformed state. Also, the mutant protein retains the wild-type ability to phosphorylate proteins on tyrosine. Partial proteolysis revealed that the carboxy-terminal half of the mutant protein was still phosphorylated, although apparently to a lesser extent. Analysis indicated that this residual phosphorylation was on tyrosine. We conclude that the major tyrosine phosphorylation in pp60v-src is not required for two of the protein's notable properties--protein kinase activity and transformation of cultured cells.  相似文献   

8.
R- cells, a line of mouse embryo fibroblasts with a targeted disruption of the insulin-like growth factor I (IGF-I) receptor genes, are refractory to transformation by several viral and cellular oncogenes. Using colony formation in soft agar as a measure of full transformation, we report here that R- cells can be transformed by v-src, although they still cannot be transformed by the activated c-src527 (mutation at tyrosine 527 to phenylalanine), which readily transforms mouse embryo cells with a wild-type number of IGF-I receptors (W cells). Although v-src is a more potent inducer of tyrosine phosphorylation than c-src527, the extent of phosphorylation of either insulin receptor substrate 1 or Shc, two of the major substrates of the IGF-I receptor, does not seem sufficiently different to explain the qualitative difference in soft agar growth. v-src, however, is considerably more efficient than c-src527 in its ability to tyrosyl phosphorylate, in R- cells, the focal adhesion kinase, Stat1, and p130cas. These results indicate that v-src, but not c-src527, can bypass the requirement for a functional IGF-I receptor in the full transformation of mouse embryo fibroblasts and suggest that qualitative and quantitative differences between the two oncogenes can be used to identify some of the signals relevant to the mechanism(s) of transformation.  相似文献   

9.
GTPase-activating protein (GAP) is a cytosolic protein that stimulates the rate of hydrolysis of GTP (GTP to GDP) bound to normal p21ras, but does not catalyze the hydrolysis of GTP bound to oncogenic, activated forms of the ras protein. Transformation of cells with v-src or activated transforming variants of c-src or stimulation of cells with epidermal growth factor resulted in the stable association of GAP with two tyrosine-phosphorylated cellular proteins of 64 kDa (p64) and 190 kDa (p190). Analysis of GAP immune complexes isolated from extracts of metabolically labeled src-transformed cells and epidermal growth factor-stimulated cells indicated that tyrosine phosphorylation of p64 and p190 appeared to be coincident with the stable association of these proteins with GAP. Quantitation of the amount of p64 associated with GAP in v-src-transformed cells, however, indicated that only 15 to 25% of tyrosine-phosphorylated p64 was found in complex with GAP. Mutations within the SH2 region of pp60src that render activated pp60src defective for transformation inhibited the efficient formation of complexes between GAP and the tyrosine-phosphorylated forms of p64 and p190. From these data, we suggest that tyrosine phosphorylation and stable association of p64 with GAP is an important step in mediating cellular signaling through the p21ras-GAP pathway.  相似文献   

10.
Platelet-derived growth factor (PDGF) stimulated the tyrosine phosphorylation of the GTPase activating protein (GAP) in 3T3 cells and in CHO cells expressing wild-type PDGF receptors, but not in several CHO cell lines expressing mutant receptors defective in transmitting mitogenic signals. Following PDGF treatment of cells, GAP physically associated with the PDGF receptor and with Raf-1, phospholipase c-gamma, and PI-3 kinase, suggesting that PDGF induced the formation of complexes of signaling molecules. The association of GAP with the PDGF receptor and the phosphorylation of GAP with the PDGF receptor and the phosphorylation of GAP were reconstituted in vitro using purified protein and in insect cells expressing murine PDGF receptor and human GAP. However, in cells transformed by activated c-Ha-ras, which are defective in certain responses to PDGF, GAP failed to associate with the PDGF receptor or increase its phosphotyrosine content in response to PDGF. The association of GAP with ligand-activated PDGF receptors may directly link PDGF and ras signaling pathways.  相似文献   

11.
We have previously found that Rous sarcoma virus variants in which the viral src (v-src) gene is replaced by the cellular src (c-src) gene have no transforming activity. In this study, we analyzed the basis for the inability of the p60c-src overproduced by these variants to transform cells. Phosphorylations of tyrosine residues in total cell protein or in cellular 34K protein are known to be markedly enhanced upon infection with wild-type Rous sarcoma virus. We found that these tyrosine phosphorylations were only slightly increased in the c-src-containing virus-infected cells, whereas both levels were significantly increased by infection with wild-type Rous sarcoma virus, or transforming mutant viruses which are derived from c-src-containing viruses by spontaneous mutation. Phosphorylation at tyrosine 416 of p60 itself was also extremely low in overproduced p60c-src and high in p60s of transforming mutant viruses. In immunoprecipitates with monoclonal antibody, the overproduced p60c-src had much lower casein tyrosine kinase activity than did p60v-src. We previously showed that p60 myristylation and plasma membrane localization may be required for cell transformation. p60c-src was similar to transforming p60s in these properties. These results strongly suggest that the low level of tyrosine phosphorylation by overproduced p60c-src accounts for its inability to transform cells.  相似文献   

12.
Expression of pp60v-src, the transforming protein of Rous sarcoma virus, arrests the growth of the yeast Saccharomyces cerevisiae. To determine the basis of this growth arrest, yeast strains were constructed that expressed either wild-type v-src or various mutant v-src genes under the control of the galactose-inducible, glucose repressible GAL1 promoter. When shifted to galactose medium, cells expressing wild-type v-src ceased growth immediately and lost viability, whereas cells expressing a catalytically inactive mutant (K295M) continued to grow normally, indicating that the kinase activity of pp60v-src is required for its growth inhibitory effect. Mutants of v-src altered in the SH2/SH3 domain (XD4, XD6, SPX1, and SHX13) and a mutant lacking a functional N-terminal myristoylation signal (MM4) caused only a partial inhibition of growth, indicating that complete growth inhibition requires either targeting of the active kinase or binding of the kinase to phosphorylated substrates, or both. Cells arrested by v-src expression displayed aberrant microtubule structures, alterations in DNA content and elevated p34CDC28 kinase activity. Immunoblotting with antiphosphotyrosine antibody showed that many yeast proteins, including the p34CDC28 kinase, became phosphorylated at tyrosine in cells expressing v-src. Both the growth inhibition and the tyrosine-specific protein phosphorylation observed following v-src expression were reversed by co-expression of a mammalian phosphotyrosine-specific phosphoprotein phosphatase (PTP1B). However a v-src mutant with a small insertion in the catalytic domain (SRX5) had the same lethal effect as wild-type v-src, yet induced only very low levels of protein-tyrosine phosphorylation. These results indicate that inappropriate phosphorylation at tyrosine is the primary cause of the lethal effect of pp60v-src expression but suggest that only a limited subset of the phosphorylated proteins are involved in this effect.  相似文献   

13.
We constructed a mutant, called RSV-SF2, at the ATP-binding site of pp60v-src. In this mutant, lysine-295 is replaced with methionine. SF2 pp60v-src was found to have a half-life similar to that of wild-type pp60v-src and was localized in the membranous fraction of the cell. Rat cells expressing SF2 pp60v-src were morphologically untransformed and do not form tumors. The SF2 pp60v-src isolated from these cells lacked kinase activity with either specific immunoglobulin or other substrates, and expression of SF2 pp60v-src failed to cause an increase of total phosphotyrosine in the proteins of infected cells. Wild-type pp60v-src was phosphorylated on serine and tyrosine in infected cells, and the analogous phosphorylations could also be carried out in vitro. Phosphorylation of serine was catalyzed by a cyclic AMP-dependent protein kinase, and phosphorylation of tyrosine was perhaps catalyzed by pp60v-src itself. By contrast, SF2 pp60v-src could not be phosphorylated on serine or tyrosine either in infected cells or in vitro. These findings strengthen the belief that the phosphotransferase activity of pp60v-src is required for neoplastic transformation by the protein and suggest that the binding of ATP to pp60v-src elicits an allosteric change required for phosphorylation of serine in the protein.  相似文献   

14.
Rat 3Y1 cells acquire metastatic potential when transformed with v-src, and this potential is enhanced by double transformation with v-src and v-fos (Taniguchi, S., T. Kawano, T. Mitsudomi, G. Kimura, and T. Baba. 1986. Jpn. J. Cancer Res. 77:1193-1197). We compared the activity of cadherin cell adhesion molecules of normal 3Y1 cells with that of v-src transformed (SR3Y1) and v-src and v-fos double transformed (fosSR3Y1) 3Y1 cells. These cells expressed similar amounts of P-cadherin, and showed similar rates of cadherin-mediated aggregation under suspended conditions. However, the aggregates or colonies of these cells were morphologically distinct. Normal 3Y1 cells formed compacted aggregates in which cells are firmly connected with each other, whereas the transformed cells were more loosely associated, and could freely migrate out of the colonies. Overexpression of exogenous E-cadherin in these transformed cells had no significant effect on their adhesive properties. We then found that herbimycin A, a tyrosine kinase inhibitor, induced tighter cell-cell associations in the aggregates of the transformed cells. In contrast, vanadate, a tyrosine phosphatase inhibitor, inhibited the cadherin-mediated aggregation of SR3Y1 and fosSR3Y1 cells but had little effect on that of normal 3Y1 cells. These results suggest that v-src-mediated tyrosine phosphorylation perturbs cadherin function directly or indirectly, and the inhibition of tyrosine phosphorylation restores cadherin action to the normal state. We next studied tyrosine phosphorylation on cadherins and the cadherin-associated proteins, catenins. While similar amounts of catenins were expressed in all of these cells, the 98-kD catenin was strongly tyrosine phosphorylated only in SR3Y1 and fosSR3Y1 cells. Cadherins were also weakly tyrosine phosphorylated only in the transformed cells. The tyrosine phosphorylation of these proteins was enhanced by vanadate, and inhibited by herbimycin A. Thus, the tyrosine phosphorylation of the cadherin-catenin system itself might affect its function, causing instable cell-cell adhesion.  相似文献   

15.
We have found that overexpression of human ornithine decarboxylase (ODC) induces cell transformation in NIH 3T3 and Rat-1 cells (M. Auvinen, A. Paasinen, L. C. Andersson, and E. Hölttä, Nature (London) 360:355-358, 1992). The ODC-transformed cells display increased levels of tyrosine phosphorylation, in particular of a cluster of 130-kDa proteins. Here we show that one of the proteins with enhanced levels of tyrosine phosphorylation in ODC-overexpressing cells is the previously described p130 substrate of pp60v-src, known to associate also with v-Crk and designated p130CAS. We also studied the role of protein tyrosine phosphorylation in the ODC-induced cell transformation by exposing the cells to herbimycin A, a potent inhibitor of Src-family kinases, and to other inhibitors of protein tyrosine kinases. Treatment with the inhibitors reversed the phenotype of ODC-transformed cells to normal, with an organized, filamentous actin cytoskeleton. Coincidentally, the tyrosine hyperphosphorylation of p130 was markedly reduced, while the level of activity of ODC remained highly elevated. A similar reduction in pp130 phosphorylation and reversion of morphology by herbimycin A were observed in v-src- and c-Ha-ras-transformed cells. In addition, we show that expression of antisense mRNA for p130CAS resulted in reversion of the transformed phenotype of all these cell lines. An increased level of tyrosine kinase activity, not caused by c-Src or c-Abl, was further detected in the cytoplasmic fraction of ODC-transformed cells. Preliminary characteristics of this kinase are shown. These data indicate that p130CAS is involved in cell transformation by ODC, c-ras, and v-src oncogenes, raise the intriguing possibility that p130CAS may be generally required for transformation, and imply that there is at least one protein tyrosine kinase downstream of ODC that is instrumental for cell transformation.  相似文献   

16.
Previous work has shown that microinjection into cells of antibodies against p21ras blocks transformation by src, suggesting that oncogenic transformation by pp60v-src is dependent on p21ras. The activity of p21ras itself is regulated by its cyclic association with GDP-GTP, where p21ras-GTP is the active form and p21ras-GDP is the inactive form. A GTPase-activating protein (GAP) mediates the inactivation of p21ras by facilitating the conversion of the active p21ras-GTP to the inactive p21ras-GDP. This predicts that overexpression of GAP would inactivate p21ras and block transformation of cells by src. In this paper, we confirm this prediction. We report that overexpression of GAP in NIH 3T3 cells blocks transformation by pp60v-src but not by v-ras. Susceptibility to transformation by v-src is restored when GAP expression is lowered to levels comparable to that in control cells. These results support the suggestion that p21ras plays a central role in the signalling pathway used by pp60v-src.  相似文献   

17.
Using anti-phosphotyrosine immunoaffinity chromatography, we have searched for serine/threonine kinases that are directly regulated by tyrosine phosphorylation in v-src-transformed rat 3Y1 fibroblasts. Tyrosine phosphoprotein preparations from v-src-transformed cells contain a kinase activity that phosphorylates histone H1 in vitro on serine residues and this activity is present at a 20-fold greater level than that in parental cell preparations. This activity elutes from a MonoQ FPLC column as a single peak and gel filtration chromatography suggests that the kinase has a molecular mass of approximately 55 kDa. Tyrosine phosphatase treatment inactivates the histone H1 kinase and this result indicates that the specific activity of the kinase is regulated by tyrosine phosphorylation. Experiments with cells transformed with a temperature-sensitive mutant of the v-src oncogene demonstrate that the tyrosine phosphorylation of the histone H1 kinase is an early event in v-src transformation. The kinase is distinct from known cdc2 family members that contain the PSTAIR motif, because the kinase can be separated almost completely from these proteins by immunoprecipitation with an antibody against p34cdc2. The profile of antibody reactivity and sensitivity to modulators of protein kinases suggests that this activity is distinct from known second messenger-regulated kinases and from previously characterized MAP kinases.  相似文献   

18.
S J Decker  B Dorai    S Russell 《Journal of virology》1988,62(10):3649-3654
Tumor promoter-stimulated phosphorylation of threonine 98 of the erbB protein of avian erythroblastosis virus (AEV) correlates with inhibition of erbB-dependent mitogenesis. To more clearly define the role of phosphorylation of this residue in regulation of the activity of the erbB protein, we have constructed erbB mutations which encode alanine (Ala-98), tyrosine (Tyr-98), or serine (Ser-98) at position 98. The biosynthesis and stability of the three mutant proteins were similar to those of the wild-type erbB protein, and all three retained the ability to transform chicken embryo fibroblasts. Treatment of transformed CEF with 12-tetradecanoylphorbol-13-acetate (TPA) stimulated incorporation of 32Pi into wild-type and mutant erbB proteins and resulted in a slight decrease in the electrophoretic mobilities of all the erbB proteins. Tryptic maps of erbB phosphopeptides showed no endogenous or TPA-stimulated phosphorylation of alanine 98 or tyrosine 98 in cells transformed by the Ala-98 and Tyr-98 mutants. Analysis of tryptic phosphopeptides by high-pressure liquid chromatography revealed that TPA treatment of cells stimulated phosphorylation of other sites of the erbB protein in addition to threonine 98. A high endogenous level of phosphorylation of serine 98 of the Ser-98 mutant protein was found, and TPA treatment of cells did not result in further phosphorylation of this residue. Cells transformed by wild-type and mutant AEV were equally sensitive to TPA-dependent inhibition of growth in soft agar and TPA-dependent inhibition of [3H]thymidine incorporation. TPA treatment inhibited tyrosine phosphorylation to a similar extent in cells transformed by wild-type or Ala-98 AEV. These data indicate that phosphorylation of threonine 98 of the erbB protein is not responsible for TPA-dependent inhibition of growth of AEV-transformed cells or TPA-induced inhibition of erbB-dependent tyrosine phosphorylation. TPA-stimulated phosphorylation of the erbB protein at other sites may mediate these effects. The data also show that subtle changes in a phosphorylation site (i.e., changing threonine to serine) can drastically alter recognition by protein kinases.  相似文献   

19.
Expression of the v-src gene of Rous sarcoma virus in avian embryo neuroretina cells results in transformation and sustained proliferation of these normally resting cells. Transformed neuroretina cells are also tumorigenic upon inoculation into immunodeficient hosts. We have previously described conditional mutants of Rous sarcoma virus encoding p60v-src proteins which induce proliferation of neuroretina cells in the absence of transformation and tumorigenicity. These results suggest that p60v-src is composed of functionally distinct domains which may interact with multiple cellular targets. In this study, we describe a spontaneous variant of Rous sarcoma virus, subgroup E, which carries a deletion of 278 base pairs in the 5' portion of the v-src gene but which has retained the ability to induce proliferation of quail neuroretina cells. The deleted v-src gene encodes a 45,000-molecular-weight phosphoprotein which contains both phosphoserine and phosphotyrosine, is myristylated, and possesses tyrosine kinase activity indistinguishable from that of wild-type p60v-src. Molecular cloning and sequence analysis of the mutant v-src gene have shown that this deletion extends from amino acid 33 to 126 of the wild-type p60v-src. Therefore, this portion of the v-src protein is dispensable for the mitogenic activity of Rous sarcoma virus in neuroretina cells.  相似文献   

20.
The E5 protein of bovine papillomavirus type 1 binds to and activates the endogenous platelet-derived growth factor (PDGF) beta receptor in fibroblasts, resulting in cell transformation. We have developed a functional assay to test the ability of PDGF beta receptor mutants to mediate a mitogenic signal initiated by the E5 protein. Lymphoid Ba/F3 cells are strictly dependent on interleukin-3 for growth, but coexpression of the wild-type PDGF beta receptor and the E5 or v-sis-encoded protein generated a mitogenic signal which allowed Ba/F3-derived cells to proliferate in the absence of interleukin-3. In these cells, the E5 protein bound to and caused increased tyrosine phosphorylation of both the mature and the precursor forms of the wild-type PDGF beta receptor. The tyrosine kinase activity of the receptor was necessary for E5-induced receptor tyrosine phosphorylation and mitogenic activity but not for complex formation with the E5 protein. In contrast, the PDGF-binding domain of the receptor was not required for complex formation with the E5 protein, E5-induced tyrosine phosphorylation or mitogenic activity, demonstrating that E5-mediated receptor activation is ligand independent. Analysis of receptor mutants lacking various combinations of tyrosine phosphorylation sites revealed that the E5 and v-sis-encoded proteins display similar requirements for signaling and suggested that the wild-type PDGF beta receptor can generate multiple independent mitogenic signals. Importantly, these mutants dissociated two activities of the PDGF beta receptor tyrosine kinase, both of which are required for sustained mitogenic signaling: (i) receptor autophosphorylation and creation of binding sites for SH2 domain-containing proteins and (ii) phosphorylation of substrates other than the receptor itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号