首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in the insect brain and are target sites for neonicotinoid insecticides. Seven nAChR subunits (four alpha-type and three beta-type) have been cloned previously from Drosophila melanogaster, the model insect system and characterized by heterologous expression. Recently, three further putative nAChR alpha subunits (Dalpha5, Dalpha6 and Dalpha7) with sequence similarity to the vertebrate alpha7 subunit have been identified from Drosophila genome sequence data but there have been no reports, as yet, of their characterization by heterologous expression. In the present study, we report the first isolation of a full-length Dalpha7 cDNA and the independent molecular cloning of Dalpha6. Binding of nicotinic radioligands was not detected to full-length Dalpha6 or Dalpha7 subunits when expressed alone or when or co-expressed with other nAChR subunits in Drosophila or mammalian cell lines, but specific cell-surface binding of [(125)I]alpha-bungarotoxin (K(d) = 0.68 +/- 0.22 nm) and [(3)H]methyllycaconitine (K(d) = 0.27 +/- 0.06 nm) was detected after expression of a subunit chimera containing the ligand-binding domains of Dalpha6 fused to the C-terminal domain of the 5-hydroxytryptamine receptor 5HT(3A). Although cell-surface binding was not detected with a Dalpha7/5HT(3Alpha) chimera expressed alone, co-expression of the two subunit chimeras resulted in significantly enhanced levels of nicotinic radioligand binding (with no change in affinity). This is the first evidence for the formation of a nAChR binding site by heterologously expressed Drosophila nAChR subunits in the absence of a co-expressed vertebrate nAChR subunit. In addition to the formation of homomeric nAChR complexes, evidence has been obtained from both radioligand binding and co-immunoprecipitation studies for the co-assembly of Dalpha6 and Dalpha7 into heteromeric cell surface complexes.  相似文献   

3.
Nicotinic acetylcholine receptors (nAChRs) are important for fast synaptic cholinergic transmission. They are targets of drugs/chemicals for human and animal health as well as for pest control. With the advent of genome sequencing, entire nAChR gene families have now been described for vertebrates and invertebrates. Mostly, these are extensive with a large number of distinct subunits, making possible many nAChR subtypes differing in transmitter affinity, channel conductance, ion selectivity, desensitization, modulation and pharmacology. The smallest nAChR gene family to date is that of the fruit fly, Drosophila melanogaster, with only 10 members. This apparently compact family belies its true diversity as 4 of the 10 subunits show alternative splicing. Also, using Drosophila, A-to-I pre-mRNA editing has been demonstrated for the first time in nAChRs. Such is the extent of this variation, that one subunit alone (Dalpha6) can potentially generate far more isoforms than seen in entire gene families from other species. We present here three-dimensional models constructed for insect nAChRs, which show that many variations introduced by alternative splicing and RNA editing may influence receptor function.  相似文献   

4.
Insect nicotinic acetylcholine receptors (nAChRs) play a central role in mediating neuronal synaptic transmission and are the target sites for the increasingly important group of neonicotinoid insecticides. Six nicotinic acetylcholine receptor (nAChR) subunits (four alpha-type and two beta-type) have been cloned previously from the model insect species Drosophila melanogaster. Despite extensive efforts, it has not been possible to generate functional recombinant nAChRs by heterologous expression of any combination of these six subunits. It has, however, been possible to express functional hybrid receptors when Drosophila alpha subunits are co-expressed with vertebrate beta subunits. This has led to the assumption that successful heterologous expression might require an, as yet, uncloned beta-type insect subunit. Examination of the recently completed Drosophila genomic sequence data has identified a novel putative nAChR beta-type subunit. Here we report the molecular cloning, heterologous expression and characterization of this putative Drosophila nAChR subunit (Dbeta3). Phylogenetic comparisons with other ligand-gated ion channel subunit sequences support its classification as a nAChR subunit but show it to be a distantly related member of this neurotransmitter receptor subunit family. Evidence that the Dbeta3 subunit is able to coassemble with other Drosophila nAChR subunits and contribute to recombinant nAChRs has been obtained by both radioligand binding and coimmunoprecipitation studies in transfected Drosophila S2 cells.  相似文献   

5.
A null mutation of the nicotinic acetylcholine receptor (nAChR) subunit Dalpha6, in Drosophila melanogaster, confers 1181-fold resistance to a new and increasingly important biopesticide, spinosad. This study's molecular characterisation of a spinosad resistance mechanism identifies Dalpha6 as a major spinosad target in D. melanogaster. Although D. melanogaster is not a major field pest, target site resistances found in this species are often conserved in pest species. This, combined with the high degree of evolutionary conservation of nAChR subunits, suggests that mutations in Dalpha6 orthologues may underpin the spinosad resistance identified in several economically important field pests.  相似文献   

6.
Nicotinic acetylcholine receptors (nAChRs) are targets for insect-selective neonicotinoid insecticides exemplified by imidacloprid (IMI) and mammalian-selective nicotinoids including nicotine and epibatidine (EPI). Despite their importance, insect nAChRs are poorly understood compared with their vertebrate counterparts. This study characterizes the [(3)H]IMI, [(3)H]EPI, and [(3)H]alpha-bungarotoxin (alpha-BGT) binding sites in hybrid nAChRs consisting of Drosophila melanogaster (fruit fly) or Myzus persicae (peach-potato aphid) alpha2 coassembled with rat beta2 subunits (Dalpha2/Rbeta2 and Mpalpha2/Rbeta2) and compares them with native insect and vertebrate alpha4beta2nAChRs. [(3)H]IMI and [(3)H]EPI bind to Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 hybrids but [(3)H]alpha-BGT does not. In native Drosophila receptors, [(3)H]EPI has a single high-affinity binding site that is independent from that for [(3)H]IMI and, interestingly, overlaps the [(3)H]alpha-BGT site. In the Mpalpha2/Rbeta2 hybrid, [(3)H]IMI and [(3)H]EPI bind to the same site and have similar pharmacological profiles. On considering both neonicotinoids and nicotinoids, the Dalpha2/Rbeta2 and Mpalpha2/Rbeta2 receptors display intermediate pharmacological profiles between those of native insect and vertebrate alpha4beta2 receptors, limiting the use of these hybrid receptors for predictive toxicology. These findings are consistent with the agonist binding site being located at the nAChR subunit interface and indicate that both alpha and beta subunits influence the pharmacological properties of insect nAChRs.  相似文献   

7.
A nicotinic acetylcholine receptor (nAChR) subunit gene, Mdalpha2, was isolated and characterized from the house fly, Musca domestica. This is the first nAChR family member cloned from house flies. Mdalpha2 had a cDNA of 2,607 bp, which included a 696 bp 5'-untranslated region (UTR), an open reading frame of 1,692 bp, and a 219 bp 3'-UTR. Its deduced amino acid sequence possesses the typical characteristics of nAChRs. Mdalpha2 genomic sequence was 11.2 kb in length in the aabys strain and 10.9 kb in the OCR strain, including eight exons and seven introns. Based on the deduced amino acid sequence, Mdalpha2 had the closest phylogenetic relationship to the Drosophila melanogaster Dalpha2 and Anopheles gambiae Agamalpha2, and a similar genomic structure to Dalpha2. Quantitative real-time PCR analysis showed that Mdalpha2 is expressed in the head and the thorax at 150- and 8.5-fold higher levels than in the abdomen. Linkage analysis of a Mdalpha2 polymorphism indicates this gene is on autosome 2. The importance of these results in understanding the diversity and phylogenetic relationships of insect nAChRs, the physiology of nAChRs in the house fly, and the utility of nAChR sequences in resistance detection/monitoring is discussed.  相似文献   

8.
Molecular identification of the first SIFamide receptor   总被引:1,自引:0,他引:1  
SIFamide is the short name and also the C terminus of the Drosophila neuropeptide AYRKPPFNGSIFamide. SIFamide has been isolated or predicted from various insects and crustaceans, and appears to be extremely well conserved among these arthropods. However, the function of this neuropeptide is still enigmatic. Here, we have identified the Drosophila gene (CG10823) coding for the SIFamide receptor. When expressed in Chinese hamster ovary cells, the receptor is only activated by Drosophila SIFamide (EC(50), 2x10(-8)M) and not by a library of 32 other insect neuropeptides and eight biogenic amines. Database searches revealed SIFamide receptor orthologues in the genomes from the malaria mosquito Anopheles gambiae, the silkworm Bombyx mori, the red flour beetle Tribolium castaneum, and the honey bee Apis mellifera. An alignment of the five insect SIFamide or SIFamide-like receptors showed, again, an impressive sequence conservation (67-77% amino acid sequence identities between the seven-transmembrane areas; 82-87% sequence similarities). The identification of well-conserved SIFamide receptor orthologues in all other insects with a sequenced genome, suggests that the SIFamide/receptor couple must have an essential function in arthropods. This paper is the first report on the identification of a SIFamide receptor.  相似文献   

9.
The recent introduction of the chloronicotinyl insecticide imidacloprid, targeting insect nicotinic acetylcholine receptors (nAChRs), emphasises the importance of a detailed molecular characterisation of these receptors. We are investigating the molecular diversity of insect nAChR subunit genes in an important agricultural pest, the peach-potato aphid Myzus persicae. Two M. persicae alpha-subunit cDNAs, Mp alpha1 and Mp alpha2, have been cloned previously. Here we report the isolation of three novel alpha-subunit genes (Mp alpha3-5) with overall amino acid sequence identities between 43 and 76% to characterised insect nAChR subunits. Alignment of their amino acid sequences with other invertebrate and vertebrate nAChR subunits suggests that the insect alpha subunits evolved in parallel to the vertebrate neuronal nAChRs and that the insect non-alpha subunits are clearly different from vertebrate neuronal beta and muscle non-alpha subunits. The discovery of novel subtypes in M. persicae is a further indicator of the complexity of the insect nAChR gene family. Heterologous co-expression of M. persicae nAChR alpha-subunit cDNAs with the rat beta2 in Drosophila S2 cells resulted in high-affinity binding of nicotinic radioligands. The affinity of recombinant nAChRs for [3H]imidacloprid was influenced strongly by the alpha subtype. This is the first demonstration that imidacloprid selectively acts on Mp alpha2 and Mp alpha3 subunits, but not Mp alpha1, in M. persicae.  相似文献   

10.
The Sex-lethal (SXL) protein belongs to the family of RNA-binding proteins and is involved in the regulation of pre-mRNA splicing. SXL has undergone an obvious change of function during the evolution of the insect clade. The gene has acquired a pivotal role in the sex-determining pathway of Drosophila, although it does not act as a sex determiner in non-drosophilids. We collected SXL sequences of insect species ranging from the pea aphid (Acyrtho siphom pisum) to Drosophila melanogaster by searching published articles, sequencing cDNAs, and exploiting homology searches in public EST and whole-genome databases. The SXL protein has moderately conserved N- and C-terminal regions and a well-conserved central region including 2 RNA recognition motifs. Our phylogenetic analysis shows that a single orthologue of the Drosophila Sex-lethal (Sxl) gene is present in the genomes of the malaria mosquito Anopheles gambiae, the honeybee Apis mellifera, the silkworm Bombyx mori, and the red flour beetle Tribolium castaneum. The D. melanogaster, D. erecta, and D. pseudoobscura genomes, however, contain 2 paralogous genes, Sxl and CG3056, which are orthologous to the Anopheles, Apis, Bombyx, and Tribolium Sxl. Hence, a duplication in the fly clade generated Sxl and CG3056. Our hypothesis maintains that one of the genes, Sxl, adopted the new function of sex determiner in Drosophila, whereas the other, CG3056, continued to serve some or all of the yet-unknown ancestral functions.  相似文献   

11.
Dalpha3 is a functional alpha-subunit of Drosophila melanogaster nicotinic acetylcholine receptors (nAChRs). Here, we produced Dalpha3-specific antibodies to study which other nAChR subunits can co-assemble with Dalpha3 in receptor complexes of the Drosophila nervous system. Immunohistochemical studies revealed that Dalpha3 is co-distributed with the beta-subunit ARD in synaptic neuropil regions of the optic lobe. Both subunits can be co-purified by alpha-bungarotoxin affinity chromatography. Dalpha3 antibodies co-immunoprecipitate Dalpha3 and ARD proteins and, vice versa, anti-ARD antibodies co-precipitate ARD and Dalpha3. These data demonstrate that one type of fly nAChRs includes these two subunits as integral components.  相似文献   

12.
Resistance to insecticides by modification of their molecular targets is a serious problem in chemical control of many arthropod pests. Neonicotinoids target the nicotinic acetylcholine receptor (nAChR) of arthropods. The spectrum of possible resistance-conferring mutations of this receptor is poorly understood. Prediction of resistance is complicated by the existence of multiple genes encoding the different subunits of this essential component of neurotransmission. We focused on the cluster of three Drosophila melanogaster nAChR subunit genes at cytological region 96A. EMS mutagenesis and selection for resistance to nitenpyram was performed on hybrids carrying a deficiency for this chromosomal region. Two complementation groups were defined for the four strains isolated. Molecular characterisation of the mutations found lesions in two nAChR subunit genes, Dalpha1 (encoding an alpha-type subunit) and Dbeta2 (beta-type). Mutations conferring resistance in beta-type receptors have not previously been reported, but we found several lesions in the Dbeta2 sequence, including locations distant from the predicted neonicotinoid-binding site. This study illustrates that mutations in a single-receptor subunit can confer nitenpyram resistance. Moreover, some of the mutations may protect the insect against nitenpyram by interfering with subunit assembly or channel activation, rather than affecting binding affinities of neonicotinoids to the channel.  相似文献   

13.
The Drosophila Genome Project website contains an annotated gene (CG14575) for a G protein-coupled receptor. We cloned this receptor and found that the cloned cDNA did not correspond to the annotated gene; it partly contained different exons and additional exons located at the 5(')-end of the annotated gene. We expressed the coding part of the cloned cDNA in Chinese hamster ovary cells and found that the receptor was activated by two neuropeptides, capa-1 and -2, encoded by the Drosophila capability gene. Database searches led to the identification of a similar receptor in the genome from the malaria mosquito Anopheles gambiae (58% amino acid residue identities; 76% conserved residues; and 5 introns at identical positions within the two insect genes). Because capa-1 and -2 and related insect neuropeptides stimulate fluid secretion in insect Malpighian (renal) tubules, the identification of this first insect capa receptor will advance our knowledge on insect renal function.  相似文献   

14.
The cys-loop ligand-gated ion channel (cysLGIC) super family of Tetranychus urticae, the two-spotted spider mite, represents the largest arthropod cysLGIC super family described to date and the first characterised one within the group of chelicerates. Genome annotation, phylogenetic analysis and comparison of the cysLGIC subunits with their counterparts in insects reveals that the T. urticae genome encodes for a high number of glutamate- and histamine-gated chloride channel genes (GluCl and HisCl) compared to insects. Three orthologues of the insect γ-aminobutyric acid (GABA)-gated chloride channel gene Rdl were detected. Other cysLGIC groups, such as the nAChR subunits, are more conserved and have clear insect orthologues. Members of cysLGIC family mediate endogenous chemical neurotransmission and they are prime targets of insecticides. Implications for toxicology associated with the identity and specific features of T. urticae family members are discussed. We further reveal the accumulation of known and novel mutations in different GluCl channel subunits (Tu_GluCl1 and Tu_GluCl3) associated with abamectin resistance in T. urticae, and provide genetic evidence for their causality. Our study provides useful toxicological insights for the exploration of the T. urticae cysLGIC subunits as putative molecular targets for current and future chemical control strategies.  相似文献   

15.
Toll-like receptors (TLRs) are a group of evolutionary conserved proteins with diverse biological functions. In Drosophila melanogaster, Toll protein plays an important role in pattern formation in embryogenesis and in antimicrobial immunity in larvae and adults. In insects, Toll and two other related proteins, Tehao and 18-wheeler have been shown to participate in the activation of the innate immune responses to fungal and bacterial pathogens. In this paper we report the cloning and characterization of four TLR gene from malaria vector mosquito Anopheles gambiae, AgToll, AgToll6, AgTrex, and AgToll9, orthologues of DmToll, DmToll6, DmTollo (Toll8) and DmToll9 (CG5528) in Drosophila melanogaster. The expression profiles of these genes during development, in different adult tissues and after immune challenge were examined. As expected for the orthologue of Drosophila Toll, AgToll was found to be expressed highly in the ovary and may play a role in pattern formation during embryogenesis. AgToll9, surprisingly, was found to be highly expressed in the adult gut. The potential roles of these genes in development and immunity were discussed.  相似文献   

16.
Jones AK  Elgar G  Sattelle DB 《Genomics》2003,82(4):441-451
Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission at nerve-muscle junctions and in the brain. However, the complete gene family of nAChRs has not so far been reported for any vertebrate organism. We have identified the complete nAChR gene family from the reference genome of the pufferfish, Fugu rubripes. It consists of 16 alpha and 12 non-alpha candidate subunits, making it the largest vertebrate nAChR gene family known to date. The gene family includes an unusual set of muscle-like nAChR subunits comprising two alpha1s, two beta1s, one delta, one epsilon, and one gamma. One of the beta1 subunits possesses an aspartate residue and N-glycosylation sites hitherto shown to be necessary for delta-subunit function. Potential Fugu orthologs of neuronal nAChR subunits alpha2-4, alpha6, and beta2-4 have been identified. Interestingly, the Fugu alpha5 counterpart appears to be a non-alpha subunit. Fugu possesses an expanded set of alpha7-9-like subunits and no alpha10 ortholog has been found. Two new candidate beta subtypes, designated beta5 and beta6, may represent subunits yet to be found in the human genome. The Fugu nAChR gene structures are considerably more diverse than those of higher vertebrates, with evidence of "intron gain" in many cases. We show, using RT-PCR, that the Fugu nAChR subunits are expressed in a variety of tissues.  相似文献   

17.
As part of a program to monitor the susceptibility of cat flea populations to the insecticide imidacloprid we have examined the cat flea nicotinic acetylcholine receptor, the target site protein of the neonicotinoid group of insecticides. Seven nAChR subunits (six alpha-type and one beta-type) were identified in cat flea using a degenerate PCR-based strategy. Five of these were expressed in vitro by creating chimeras containing the N-terminal ligand-binding domain of the cat flea subunits and the C-terminal region of the Drosophila Dalpha2 (SAD) subunit. Two of the five chimeric subunits, Cfalpha1/Dalpha2 and Cfalpha3/Dalpha2, when co-expressed with rat beta2 in Drosophila S2 cells, showed high-affinity binding of both epibatidine (Kd=1.6+/-0.6 and 0.13+/-0.06nM, respectively), and imidacloprid (Ki=142+/-34 and 28.7+/-2.4nM, respectively). It is likely therefore that Cfalpha1 and Cfalpha3 contribute to nAChR populations in vivo that are sensitive to imidacloprid. The identification of cat flea nAChR subunits that have a high affinity for imidacloprid presents candidate genes in which to look for resistance-associated mutations if target-site resistance to imidacloprid arises in domestic pet flea populations.  相似文献   

18.
19.
Importin alpha's mediate nuclear transport by linking nuclear localization signal (NLS)-containing proteins to importin beta1. Animal genomes encode three conserved groups of importin alpha's, alpha1's, alpha2's, and alpha3's, each of which are competent to bind classical NLS sequences. Using Drosophila melanogaster we describe the isolation and phenotypic characterization of the first animal importin alpha1 mutant. Animal alpha1's are more similar to ancestral plant and fungal alpha1-like genes than to animal alpha2 and alpha3 genes. Male and female importin alpha1 (Dalpha1) null flies developed normally to adulthood (with a minor wing defect) but were sterile with defects in gametogenesis. The Dalpha1 mutant phenotypes were rescued by Dalpha1 transgenes, but not by Dalpha2 or Dalpha3 transgenes. Genetic interactions between the ectopic expression of Dalpha1 and the karyopherins CAS and importin beta1 suggest that high nuclear levels of Dalpha1 are deleterious. We conclude that Dalpha1 performs paralog-specific activities that are essential for gametogenesis and that regulation of subcellular Dalpha1 localization may affect cell fate decisions. The initial expansion and specialization of the animal importin alpha-gene family may have been driven by the specialized needs of gametogenesis. These results provide a framework for studies of the more complex mammalian importin alpha-gene family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号