首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of phospholipid polar head group was achieved by growing human cultured fibroblasts in medium devoid of serum and supplemented with N-methyl ethanolamine or N,N-dimethylethanolamine during 48 h. The corresponding phospholipids accounted for approximately 45% of total phospholipids. Whereas low density lipoprotein (LDL) binding was unaffected, LDL internalization and degradation appeared to be markedly reduced in the presence of N-methylethanolamine. N,N-dimethylethanolamine had no effect on the three studied parameters. These results emphasize the importance of phospholipid polar head group in LDL processing by receptor-mediated endocytosis.  相似文献   

2.
The surface pressure (pi)-molecular area (A) isotherms for monolayers of human high-density lipoprotein (HDL3) and low-density lipoprotein (LDL) phospholipids and of mixed monolayers of these phospholipids with cholesterol spread at the air-water interface were used to deduce the likely molecular packing at the surfaces of HDL3 and LDL particles. LDL phospholipids form more condensed monolayers than HDL3 phospholipids; for example, the molecular areas of LDL and HDL3 phospholipids at pi = 10 dyn/cm are 88 and 75 A2/molecule, respectively. The closer packing in the LDL phospholipids monolayer can be attributed to the higher contents of saturated phosphatidylcholines and sphingomyelin relative to HDL3. Cholesterol condenses both HDL3 and LDL phospholipid monolayers but has a greater condensing effect on the LDL phospholipid monolayer. The pi-A isotherms for mixed monolayer of HDL3 phospholipid/cholesterol and LDL phospholipid/cholesterol at stoichiometries similar to those at the surfaces of lipoprotein particles suggest that the monolayer at the surface of the LDL particle is significantly more condensed than that at the surface of the HDL3 particle. The closer lateral packing in LDL is due to at least three factors: (1) the difference in phospholipid composition; (2) the higher unesterified cholesterol content in LDL; and (3) a stronger interaction between cholesterol and LDL phospholipids relative to HDL3 phospholipids. The influence of lipid molecular packing on the affinity of human apolipoprotein A-I (apo A-I) for HDL3 and LDL surface lipids was evaluated by monitoring the adsorption of 14C-methylated apo A-I to monolayers of these lipids spread at various initial surface pressures (pi i).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We studied the mechanism of uptake and metabolism of exogenous phospholipids in mouse peritoneal macrophages using vesicles composed of various phospholipids and cholesterol. Macrophages in culture were found to actively incorporate and metabolize phosphatidylcholine/cholesterol vesicles containing small amounts of acidic phospholipids such as phosphatidylserine, phosphatidylinositol, or phosphatidic acid and to store the fatty acyl chains and cholesterol in triacylglycerol and cholesteryl ester form in their cytosol. These cells exhibited massive amounts of oil red O-positive lipid droplets, a typical feature of foam cells. The metabolism of exogenous phospholipid vesicles was completely inhibited by chloroquine and cytochalasin B, suggesting that vesicle uptake occurs by endocytosis. A similar type of metabolism was observed in guinea pig peritoneal macrophages, macrophage cell line J774.1, but not in Swiss 3T3 fibroblasts. Competition studies using various ligands for the scavenger receptor showed that acetylated low density lipoprotein (acetyl-LDL), dextran sulfate, or fucoidan was able to compete for up to 60% of the binding of phosphatidylserine-containing vesicles, and that copper-oxidized LDL (oxidized LDL) competed for more than 90% of the vesicle binding. On the other hand, phosphatidylserine-containing vesicles was able to compete for more than 90% of the binding of acetyl-LDL. These results indicate that acidic phospholipids are recognized by the scavenger receptors on the surface of macrophages and that more than one scavenger receptor exists on mouse peritoneal macrophages, i.e. one capable of recognizing acetyl-LDL, oxidized LDL, and an array of acidic phospholipids on membranes, and the other recognizing both acidic phospholipids and oxidized LDL but not acetyl-LDL.  相似文献   

4.
Properties of the surface lipid-protein layer of human low density lipoprotein (LDL) have been studied with fluorescent phosphatidylcholine analogues containing a pyrenyl fatty acid of variable length at both sn-1 and sn-2 position of the glycerol moiety. Only intramolecular excimer formation takes place at low concentrations, as indicated by the independence of the ratio of excimer to monomer fluorescence intensities (E/M) on the amount of the incorporated dipyrenyl phospholipid. The E/M parameter which depends on the fluidity of the probe's environment were measured for a series of dipyrenyl phospholipids in three systems, i.e. in LDL, LDL-like lipid particles (LDp) and small unilamellar phosphatidylcholine/sphingomyelin/cholesterol vesicles (SUV). The data indicate that the fluidity of the phospholipid acyl chain region decreases in the order: SUV greater than LDp greater than LDL. This suggests that interactions with both the core lipids and the protein moiety (apoB-100) contribute to the rigidity of the surface lipid layer of LDL. Dipyrenyl phospholipids also detect the thermotropic transition of the core lipids of both LDL and LDp, suggesting that this transition influences the fluidity of the surface lipid layer.  相似文献   

5.
Purification and ATPase activity of human ABCA1   总被引:3,自引:0,他引:3  
ATP-binding cassette protein A1 (ABCA1) plays a major role in cholesterol homeostasis and high density lipoprotein metabolism. Apolipoprotein A-I binds to ABCA1 and cellular cholesterol and phospholipids, mainly phosphatidylcholine, are loaded onto apoA-I to form pre-beta high density lipoprotein (HDL). It is proposed that ABCA1 translocates phospholipids and cholesterol directly or indirectly to form pre-beta HDL. To explore the mechanism of ABCA1-mediated pre-beta HDL formation, we expressed human ABCA1 in insect Sf9 cells and purified it. Trypsin limited-digestion of purified ABCA1 in the detergent-soluble form suggested that it retained conformation similar to ABCA1 expressed in the membranes of human fibroblast WI-38 cells. Purified ABCA1 showed robust ATPase activity when reconstituted in liposomes made of synthetic phosphatidylcholine. ABCA1 showed lower ATPase activity when reconstituted in liposomes containing phosphatidylserine, phosphatidylethanolamine, or phosphatidylglycerol and also showed weak specificity in acyl chain species. ATPase activity was reduced by the addition of cholesterol and decreased by 25% in the presence of 20% cholesterol. Beta-sitosterol and campesterol showed similar inhibitory effects but stigmasterol did not, suggesting structure-specific interaction between ABCA1 and sterols. Glibenclamide suppressed ABCA1 ATPase, suggesting that it inhibits apoA-I-dependent cellular cholesterol efflux by suppressing ABCA1 ATPase activity. These results suggest that the ATPase activity of ABCA1 is stimulated preferentially by phospholipids with choline head groups, phosphatidylcholine and sphingomyelin. This study with purified human ABCA1 provides the first biochemical basis of the mechanism for HDL formation mediated by ABCA1.  相似文献   

6.
The oxidation of low density lipoproteins (LDL) has been correlated with atherogenesis through a variety of pathways. The process involves nonspecific fragmentation, oxidative breakdown, and modification of the lipids and protein of LDL. The process yields a variety of bioactive products, including aldehyde-containing phospholipids, which can cross-react with primary amines (i.e. peptides or phospholipid head groups) to yield Schiff base products. We also demonstrate that such oxidized phospholipid products may further react through a post-oxidation chemical pathway involving aldol condensation. EO6, an IgM monoclonal autoantibody to oxidized phospholipids, blocks the uptake of oxidized LDL (OxLDL) by macrophages. Because the epitope(s) of EO6 also blocks the uptake of OxLDL, a series of oxidized phospholipids, their peptide complexes, and their aldol condensates have been synthesized and characterized, and their antigenicity has been determined. This study defines structural motifs of oxidized phospholipids responsible for antigenicity for EO6. Certain monomeric phospholipids containing short chain fatty acids were antigenic whether oxidized or not in the sn-2 position. However, oxidized phospholipids containing sn-1 long chain fatty acids were not antigenic unless the sn-2 oxidized fatty acid contained an aldehyde that first reacted with a peptide yielding a Schiff base or the sn-2 oxidized fatty acid underwent an aldol type self-condensation. Our data indicate that the phosphorylcholine head group is essential for antigenicity, but its availability depends on the oxidized phospholipid conformation. We suggest that upon oxidation, similar reactions occur in phospholipids on the surface of LDL, generating ligands for macrophage recognition. Synthetic imine adducts of oxidized phospholipids of this type are capable of blocking the uptake of OxLDL.  相似文献   

7.
Circulating lipoproteins are thought to play an important role in the detoxification of lipopolysaccharide (LPS) by binding the bioactive lipid A portion of LPS to the lipoprotein surface. It has been assumed that hypocholesterolemia contributes to inflammation during critical illness by impairing LPS neutralization. We tested whether critical illness impaired LPS binding to lipoproteins and found, to the contrary, that LPS binding was enhanced and that LPS binding to the lipoprotein classes correlated with their phospholipid content. Whereas low serum cholesterol was almost entirely due to the loss of esterified cholesterol (a lipoprotein core component), phospholipids (the major lipoprotein surface lipid) were maintained at near normal levels and were increased in a hypertriglyceridemic subset of septic patients. The levels of phospholipids found in the LDL and VLDL fractions varied inversely with those in the HDL fraction, and LPS bound predominantly to lipoproteins in the LDL and VLDL fractions when HDL levels were low. Lipoproteins isolated from the serum of septic patients neutralized the bioactivity of the LPS that had bound to them. Our results show that the host response to acute inflammation and infection tends to maintain lipoprotein phospholipid levels and that, despite hypocholesterolemia and reduced HDL levels, circulating lipoproteins maintain their ability to bind and neutralize an important bacterial agonist, LPS.  相似文献   

8.
In this study we examined the transfer of lipids between reconstituted high density lipoprotein discs (r-HDL) and human low density lipoproteins (LDL) in the presence and absence of lecithin:cholesterol acyltransferase (LCAT) or of plasma phospholipid transfer protein (PLTP). We found that spontaneous transfer of phospholipids from r-HDL to LDL occurred by an apparent first order reaction with a half-time of 5.8 to 6.9 hr depending on the phospholipid. During the time of incubation of r-HDL with LDL (from 0 to 25 hr), the phospholipid content of r-HDL decreased more than 30%, the free cholesterol content increased 2.5-fold, and low levels of cholesteryl esters appeared in r-HDL. These compositional changes gave rise to small discoidal particles with a limiting diameter of 77 A and two molecules of apoA-I per particle. When LCAT was included in the reaction mixture, the r-HDL lost even more phospholipid, lost some free cholesterol, and gained cholesteryl esters relative to the apolipoprotein content, due to the enzymatic reaction. The products of the LCAT reaction had a diameter of 93 A and three, rather than two, apoA-I molecules per particle. Inclusion of PLTP into the reaction mixture accelerated the transfer of phospholipids (half-time of 1.7 hr) and the formation of the 77 A product. In addition to these compositional and morphological changes, which may be important in the interconversions of native HDL subspecies, the prolonged incubations revealed some slow reactions, such as the esterification of LDL cholesterol by LCAT, a background formation of cholesteryl esters in r-HDL, and an apparent hydrolysis of cholesteryl esters in LDL in the presence of r-HDL.  相似文献   

9.
31P nuclear magnetic resonance (NMR) spectra of human low density lipoprotein (LDL) has been obtained and the major phospholipid components identified. Analysis of the spectra revealed two phospholipid environments: one occupied by 4/5 of the phospholipid with high resolution resonances possessing properties similar to phospholipids in vesicles, and a second occupied by 1/5 of the phospholipid with broad lines indicative of immobilization. Limited trypsin treatment of the particle cleaved all of the B peptide into smaller molecular weight peptides which remained with the particle. Trypsin-treated LDL eluted from a Sepharose CL-6B column similarly to native LDL so that the modified particle remained intact. 31P NMR spectra of trypsin-treated LDL showed little or no immobilized phospholipid. The immobilization in the native LDL particle is attributed to lipid-protein interactions between 1/5 of the phospholipid and the B peptide.  相似文献   

10.
Low density lipoprotein (LDL) subfractions were studied in sera from 208 normolipidemic, 22 hypercholesterolemic, and 33 hypertriglyceridemic subjects. Whole serum without preliminary ultracentrifugation was submitted to electrophoresis in a nondenaturing polyacrylamide gel. Three main LDL patterns were observed in normolipidemic sera: type 1, characterized by the presence of only one major band; type 2, characterized by the presence of two close major bands; and type 3, where LDL were more dispersed and presented at least three distinct bands. Type 1 was more frequent in men (43%) than in women (19%). The tendency for a higher potential coronary disease risk profile sera, namely higher triglyceride level, higher very low density lipoprotein + LDL fraction and lower high density lipoprotein (HDL) fraction, was type 3 less than type 2 less than type 1. The LDL patterns found in hypercholesterolemic sera were of type 1. Hypertriglyceridemic sera were characterized by the presence of a major band of small size. Separated LDL subfractions were collected by electroelution and analyzed for composition. In all subspecies, the mass ratio of core to surface components was constant as well as the molar ratio of the two lipid surface components, phospholipids and free cholesterol. Surface lipid to apolipoprotein B ratio, cholesteryl ester to triglyceride ratio, and cholesteryl ester to apoB ratio increased with particle size increment. Incubation of LDL with HDL and purified cholesteryl ester transfer protein induced a transfer of lipids, mainly cholesteryl esters and phospholipids, to LDL and an increase of the sizes of LDL subfractions. This suggests that lipid transfers from HDL to LDL might be a process of intravascular LDL remodeling and a factor of LDL polymorphism.  相似文献   

11.
A convenient method for the quantitation of choline-containing phospholipids in each lipoprotein fraction has been developed by combining separation by high-performance liquid chromatography with gel permeation columns and selective detection by enzymatic reaction in the post-column effluent.The elution patterns monitored by choline-containing phospholipids were compared with those monitored by cholesterol. The elution patterns of choline-containing phospholipids were found to give much more information about the distribution of lipoproteins according to their particle-size differentiation than analyses done by cholesterol.This choline-containing phospholipid monitoring method not only resolves lipoprotein peaks of the major classes (chylomicron + VLDL, LDL, HDL2 and HDL3) quantitatively, but also detects the presence of abnormal lipoproteins containing a large amount of choline-containing phospholipids. We could detect these abnormal lipoproteins using a small amount of whole serum (10–20 μl) from patients with various liver diseases. Our examination of HDL subclasses using this technique showed that the HDL fraction was composed of several subfractions due to their particle-size differentiation.  相似文献   

12.
Oxidation of low density lipoprotein (LDL) in vivo is thought to play a critical role in the initiation of atherosclerosis. F(2)-isoprostanes are compounds resulting from non-enzymatic oxidation of arachidonic acid and elevated levels are present in human atherosclerotic plaque. However, little is known about the formation of F(2)-isoprostanes in plaque lesions or their distribution in lipid subclasses. Given that LDL and tissue lipid subfractions (such as phospholipids, cholesterol esters and triglycerides) all contain significant levels of arachidonic acid, the aim of this study was to examine the relative distribution of F(2)-isoprostanes in the different lipid fractions of LDL oxidised in vitro, and compare this to the distribution in atherosclerotic plaque. The results reveal that while the majority of F(2)-isoprostanes are present in the phospholipid or surface lipid fractions, the core lipids (cholesterol esters/triglycerides) contribute at least 10% of the total F(2)-isoprostanes in both LDL oxidised in vitro and human atherosclerotic plaque. The remarkably similar profiles between the oxidised LDL and advanced atherosclerotic plaque suggests oxidation in vivo, is predominantly via non-enzymatic processes directed towards the surface lipids.  相似文献   

13.
J Robert  G Rebel  P Mandel  E Yavin 《Life sciences》1978,22(2):211-215
The phospholipid polar head groups composition of neuroblastoma cells growing in surface cultures was altered as a result of ethanolamine and N-methyl ethanolamine base analogues addition. After 2 days incubation a significant increase of about 30% of the cellular phospholipids and the cholesterol content was evident. These changes were accompanied by a decrease in the cellular adhesive properties and the total cell number. The fatty acid profiles of the phosphoglycerides were practically identical irrespective of the base supplement.  相似文献   

14.
A 12-week dietary intervention was carried out among 40 families from North Karelia, a county in Finland with an exceptionally high rate of coronary heart disease and high serum cholesterol values. The proportion of dietary energy derived from fat was reduced during the 12-week intervention period from about 39% to 23% in all families. The families were randomly allocated into two groups. Twenty families consumed a diet with a polyunsaturated to saturated fat (P/S) ratio of 0.9 (group I), while the other 20 families had a diet with a P/S ratio of 0.4 (group II). Total serum cholesterol decreased by 16% and 9% in men of groups I and II, respectively, and by 16% in women of both groups. These changes were due to a decrease in both low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol. LDL cholesterol and phospholipid reached minimum values after 6 weeks on both intervention diets, but LDL protein responded more slowly. Thus, after 6 weeks LDL had an altered composition containing less cholesterol and phospholipids and more protein and triglycerides than during the baseline diet. During the intervention, the linoleic acid content in the serum cholesteryl ester fraction increased, and the magnitude of this change correlated negatively with the changes in total and LDL cholesterol. The decrease in HDL cholesterol during the two intervention diets was due to a fall in the HDL2 cholesterol (29% and 24% in men, and 26% and 25% in women in groups I and II, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Previously, we isolated and characterized unique liposomal-like, cholesterol-rich lipid particles that accumulate in human atherosclerotic lesions. Human plasma low density lipoprotein (LDL) has a molar ratio of total cholesterol to phospholipid (3:1) similar to that of this lesion cholesterol-rich lipid particle. However, LDL is enriched in cholesteryl ester while the lesion lipid particle is enriched in unesterified cholesterol. To examine a possible precursor-product relationship between LDL and the lesion lipid particle, we hydrolyzed the cholesteryl ester core of LDL with cholesterol esterase. Cholesteryl ester hydrolysis occurred only after LDL was treated with trypsin. Trypsin pretreatment was not required for cholesteryl ester hydrolysis of LDL oxidized with copper, a treatment that also degrades apolipoprotein B, the major protein moiety in LDL. In contrast to greater than 90% hydrolysis of cholesteryl ester in trypsin-cholesterol esterase-treated or copper-oxidized LDL, there was only 18% hydrolysis of cholesteryl ester in similarly treated high density lipoprotein. With a limited 10-min hydrolysis of LDL cholesteryl ester, LDL-sized particles and newly formed larger flattened films or discs were present. With complete hydrolysis of LDL cholesteryl ester, LDL particles converted to complex multilamellar, liposomal-like, structures with sizes approximately five times larger than native LDL. These liposomal-like particles derived from LDL were chemically and structurally similar to unesterified cholesterol-rich lipid particles that accumulate in atherosclerotic lesions.  相似文献   

16.
The chemical and physical properties of bullfrog serum low density lipoprotein (LDL) were investigated. On a weight percentage basis, LDL contained cholesterol ester, 30.3%; cholesterol, 5.6%; triglyceride, 12.5%; phospholipids, 23.3%; and protein, 22.4%. The fatty acid compositions of triglycerides and major phospholipids from the bullfrog serum LDL were quite similar to those of human serum LDL. However, the fatty acid composition of the chlesterol ester from the bullfrog serum LDL was quite different from that of the human serum LDL. The average particle weight, determined by gel filtration, was 2 X 10(6) daltons. This value is very close to that of human LDL. In the fluorescence emission spectrum of bullfrog serum LDL, the emission maximum was 324 nm. The amino acid composition of the apo-LDL resembled that of human apo-LDL.  相似文献   

17.
The phospholipids of lipoproteins can be transferred to cells by an endocytosis-independent uptake pathway. We analyzed the role of scavenger receptor BI (SR-BI) for the selective cellular phospholipid import. Human monocytes rapidly acquired the pyrene (py)-labeled phospholipids sphingomyelin (SM), phosphatidylcholine, and phosphatidylethanolamine from different donors (low and high density lipoproteins (LDL, HDL), lipid vesicles). The anti-SR-BI antibody directed against the extracellular loop of the membrane protein lowered the cellular import of the phospholipids by 40-80%. The phospholipid transfer from the lipid vesicles into the monocytes was suppressed by LDL, HDL, and apoprotein AI. Transfection of BHK cells with the cDNA for human SR-BI enhanced the cellular import of the vesicle-derived py-phospholipids by 5-6-fold. In the case of the LDL donors, transfer of py-SM to the transfected cells was stimulated to a greater extent than the uptake of the other py-phospholipids. Similar differences were not observed when the vesicles and HDL were used as phospholipid donors. The concentration of LDL required for the half-maximal phospholipid import was close to the previously reported apparent dissociation constant for LDL binding to SR-BI. The low activation energy of the SR-BI-mediated py-phospholipid import indicated that the transfer occurs entirely in a hydrophobic environment. Disruption of cell membrane caveolae by cyclodextrin treatment reduced the SR-BI-catalyzed incorporation of py-SM, suggesting that intact caveolae are necessary for the phospholipid uptake. In conclusion, SR-BI mediates the selective import of the major lipoprotein-associated phospholipids into the cells, the transfer efficiency being dependent on the structure of the donor lipoprotein.  相似文献   

18.
The purpose of this study was to examine the effects of substituting lipoprotein deficient serum (LPDS) for complete fetal calf serum (FCS) in culture media on the growth and lipid composition of cells dissociated from 1 to 2-day-old rat brain. The results show that in FCS cultures DNA, protein and all lipids increase with an increase in the number of days in culture. Substitution of LPDS for FCS in the culture media caused a slower increase in each of these constituents. Esterified cholesterol remained unaltered with time in LPDS cultures but increased continuously in FCS cultures. Substitution of LPDS for FCS reduced, the DNA: protein ratio, and unesterified cholesterol: phospholipid ratio but the protein: phospholipid ratio and the proportion of individual phospholipids were not affected The data indicate that removal of low density lipoprotein (LDL) from serum used, in culture media reduces cell proliferation and causes alterations in cellular lipid composition specifically ratio of cholesterol: phospholipids.  相似文献   

19.
The liver is a major source of the plasma lipoproteins; however, direct studies of the regulation of lipoprotein synthesis and secretion by human liver are lacking. Dense monolayers of Hep-G2 cells incorporated radiolabeled precursors into protein ([35S]methionine), cholesterol ([3H]mevalonate and [14C]acetate), triacylglycerol, and phospholipid ([3H]glycerol), and secreted them as lipoproteins. In the absence of free fatty acid in the media, the principal lipoprotein secretory product that accumulated had a density maximum of 1.039 g/ml, similar to serum low density lipoprotein (LDL). ApoB-100 represented greater than 95% of the radiolabeled apoprotein of these particles, with only traces of apoproteins A and E present. Inclusion of 0.8 mM oleic acid in the media resulted in a 54% reduction in radiolabeled triacylglycerol in the LDL fraction and a 324% increase in triacylglycerol in the very low density lipoprotein (VLDL) fraction. Similar changes occurred in the secretion of newly synthesized apoB-100. The VLDL contained apoB-100 as well as apoE. In the absence of exogenous free fatty acid, the radiolabeled cholesterol was recovered in both the LDL and the high density lipoprotein (HDL) regions. Oleic acid caused a 50% decrease in HDL radiolabeled cholesterol and increases of radiolabeled cholesterol in VLDL and LDL. In general, less than 15% of the radiolabeled cholesterol was esterified, despite the presence of cholesteryl ester in the cell. Incubation with oleic acid did not cause an increase in the total amount of radiolabeled lipid or protein secreted. We conclude that human liver-derived cells can secrete distinct VLDL and LDL-like particles, and the relative amounts of these lipoproteins are determined, at least in part, by the availability of free fatty acid.  相似文献   

20.
Phospholipase A2 and small, dense low-density lipoprotein   总被引:10,自引:0,他引:10  
High levels of small, dense LDL in plasma are associated with increased risk for cardiovascular disease. There are some biochemical characteristics that may render small, dense LDL particles more atherogenic than larger, buoyant LDL particles. First, small, dense LDL particles contain less phospholipids and unesterified cholesterol in their surface monolayer than do large, buoyant LDL particles. This difference in lipid content appears to induce changes in the conformation of apolipoprotein B-100, leading to more exposure of proteoglycan-binding regions. This may be one reason for the high-affinity binding of small, dense LDL to arterial proteoglycans. Reduction of the phospholipid content in the surface monolayer LDL by treatment with secretory phospholipase A2 (sPLA2) forms small, dense LDL with an enhanced tendency to interact with proteoglycans. Circulating levels of sPLA2-IIA appears to be an independent risk factor for coronary artery disease and a predictor of cardiovascular events. In addition, in-vivo studies support the hypothesis that sPLA2 proteins contribute to atherogenesis and its clinical consequences. These data suggest that modification of LDL by sPLA2 in the arterial tissue or in plasma may be a mechanism for the generation of atherogenic lipoprotein particles in vivo, with a high tendency to be entrapped in the arterial extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号