首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate dehydrogenase (GDH) has recently been shown to be involved in two genetic disorders of hyperinsulinemic hypoglycemia in children. These include the hyperinsulinism/hyperammonemia syndrome caused by dominant activating mutations of GLUD1 which interfere with inhibitory regulation by GTP and hyperinsulinism due to recessive deficiency of short-chain 3-hydroxy-acyl-CoA dehydrogenase (SCHAD, encoded by HADH1). The clinical manifestations of the abnormalities in pancreatic ß-cell insulin regulation include fasting hypoglycemia, as well as protein-sensitive hypoglycemia. The latter is due to abnormally increased sensitivity of affected children to stimulation of insulin secretion by the amino acid, leucine. In patients with GDH activating mutations, mild hyperammonemia occurs in both the basal and protein-fed state, possibly due to increased renal ammoniagenesis. Some patients with GDH activating mutations appear to be at unusual risk of developmental delay and generalized epilepsy, perhaps reflecting consequences of increased GDH activity in the brain. Studies of these two disorders have been carried out in mouse models to define the mechanisms of insulin dysregulation. In SCHAD deficiency, the activation of GDH is due to loss of a direct inhibitory protein-protein interaction between SCHAD and GDH. These two novel human disorders demonstrate the important role of GDH in insulin regulation and illustrate unexpectedly important reasons for the unusually complex allosteric regulation of GDH.  相似文献   

2.
《Endocrine practice》2011,17(2):e17-e20
ObjectiveTo present a case of management of refractory hypoglycemia due to malignant insulinoma with use of everolimusresulting in recurrent insulin-requiring diabetes.MethodsThis report describes a case of a nonresectable malignant insulinoma in a 78-year-old patient with long-standing type 2 diabetes mellitus. Endogenous hyperinsulinism was confirmed by a fasting test, which revealed a glucose level of 35 mg/dL and an insulin value of 23.7 μIU/mL. Endoscopic ultrasonography, magnetic resonance imaging, and computed tomography identified a pancreatic mass, infiltration of the superior mesenteric vein, and metastatic lesions in the liver.ResultsAfter chemoembolization of the metastatic lesions, hypoglycemia recurred, despite combined treatment with somatostatin analogues, dexamethasone, and diazoxide. Everolimus, an orally administered mammalian target of rapamycin, was used at a daily dose of 5 mg. After 6 months, the hypoglycemia was controlled, and the patient presented with a C-peptide level of 0.2 ng/mL and secondary hyperglycemia that necessitated insulin treatment.ConclusionThe orally administered drug everolimus controlled hypoglycemia due to a malignant insulinoma in a patient with prior insulinrequiring diabetes. Secondary hyperglycemia was an acceptable drug effect (to the patient and managing physicians), in light of the complex and often poorly tolerated treatments available for this rare condition. (Endocr Pract. 2011;17:e17-e20)  相似文献   

3.
《Endocrine practice》2012,18(3):e52-e56
ObjectiveTo describe the uncommon presentation of hyperinsulinism in an 8-year-old boy.MethodsWe describe the patient’s clinical findings, results from biochemical and imaging studies, surgical approach, and outcome. The discussion encompasses a review of literature that provided the basis for the diagnostic and surgical approach applied to this patient’s case.ResultsAn obese 8.5-year-old boy initially presented with hypoglycemic seizures after initiation of dietary changes to treat obesity. Biochemical analysis indicated hyperinsulinism. Endoscopic ultrasonography showed no pancreatic lesions suggestive of insulinoma. Genetic studies identified no known mutations in the ABCC8, KCNJ11, GCK, or GLUD1 genes. Selective arterial calcium stimulation and hepatic venous sampling did not document a focal source for hyperinsulinism in the pancreas, and positron emission tomography with 18-fluoro-L-3,4-dihydroxyphe-nylalanine showed diffusely increased uptake in the pancreas. The patient ultimately required partial pancreatectomy because of continued hypoglycemia while taking diazoxide and octreotide. Intraoperative glucose monitoring directed the extent of surgical resection. A 45% pancreatectomy was performed, which resolved the hypoglycemia but led to impaired glucose tolerance after surgery.ConclusionThe unusual presentation of hyperinsulinism in childhood required a personalized approach to diagnosis and surgical management using intraoperative glucose monitoring that resulted in a conservative pancreatectomy. (Endocr Pract. 2012;18:e52-e56)  相似文献   

4.
Congenital hyperinsulinism (CHI) occurs as a consequence of unregulated insulin secretion from the pancreatic beta-cells. Severe recessive mutations and milder dominant mutations have been described in the ABCC8 and KCNJ11 genes encoding SUR1 and Kir6.2 subunits of the beta-cell ATP-sensitive K(+) channel. Here we report two patients with CHI unresponsive to medical therapy with diazoxide. Sequencing analysis identified a compound heterozygous mutation in ABCC8 in both patients. The first one is a carrier for the known mild dominant mutation p.Glu1506Lys jointly with the novel mutation p.Glu1323Lys. The second carries the p.Glu1323Lys mutation and a second novel mutation, p.Met1394Arg. Functional studies of both novel alleles showed reduced or null cell surface expression, typical of recessive mutations. Compound heterozygous mutations in congenital hyperinsulinism result in complex interactions. Studying these mechanisms can improve the knowledge of this disease and modify its therapy.  相似文献   

5.
Although the most common mechanism underlying congenital hyperinsulinism is dysfunction of the pancreatic ATP-sensitive potassium channel, the pathogenesis and genetic origins of this disease remains largely unexplained in more than half of all patients. UCP2 knockout mice exhibit an hyperinsulinemic hypoglycemia, suggesting an involment of UCP2 in insulin secretion. However, a possible pathogenic role for UCP2 protein in the development of human congenital hyperinsulinism or of any human disease has not yet been investigated. We studied ten children exhibiting congenital hyperinsulinism, without detectable mutations in the known congenital hyperinsulinism-causing genes. Parental-inherited heterozygous UCP2 variants encoding amino-acid changes were found in two unrelated children with congenital hyperinsulinism. Functional assays in yeast and in insulin-secreting cells revealed an impaired activity of UCP2 mutants. Therefore, we report the finding of UCP2 coding variants in human congenital hyperinsulinism, which reveals a role for this gene in the regulation of insulin secretion and glucose metabolism in humans. Our results show for the first time a direct association between UCP2 amino acid alteration and human disease and highlight a role for mitochondria in hormone secretion.  相似文献   

6.
Mutations in the sulfonylurea receptor 1 (SUR1), a subunit of ATP-sensitive potassium (K(ATP)) channels, cause familial hyperinsulinism. One such mutation, deletion of phenylalanine 1388 (DeltaPhe-1388), leads to defects in both trafficking and MgADP response of K(ATP) channels. Here we investigated the biochemical features of Phe-1388 that control the proper trafficking and function of K(ATP) channels by substituting the residue with all other 19 amino acids. Whereas surface expression is largely dependent on hydrophobicity, channel response to MgADP is governed by multiple factors and involves the detailed architecture of the amino acid side chain. Thus, structural features in SUR1 required for proper channel function are distinct from those required for correct protein trafficking. Remarkably, replacing Phe-1388 by leucine profoundly alters the physiological and pharmacological properties of the channel. The F1388L-SUR1 channel has increased sensitivity to MgADP and metabolic inhibition, decreased sensitivity to glibenclamide, and responds to both diazoxide and pinacidil. Because this conservative amino acid substitution occurs in the SUR2A and SUR2B isoforms, the mutation provides a mechanism by which functional diversities in K(ATP) channels are generated.  相似文献   

7.
Leucine and glutamine were used to elicit biphasic insulin release in rat pancreatic islets. Leucine did not mimic the full biphasic response of glucose. Glutamine was without effect. However, the combination of the two did mimic the biphasic response. When the ATP-sensitive K+ (KATP) channel-independent pathway was studied in the presence of diazoxide and KCl, leucine and its nonmetabolizable analog 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) both stimulated insulin secretion to a greater extent than glucose. Glutamine and dimethyl glutamate had no effect. Because the only known action of BCH is stimulation of glutamate dehydrogenase, this is sufficient to develop the full effect of the KATP channel-independent pathway. Glucose, leucine, and BCH had no effect on intracellular citrate levels. Leucine and BCH both decreased glutamate levels, whereas glucose was without effect. Glucose and leucine decreased palmitate oxidation and increased esterification. Strikingly, BCH had no effect on palmitate oxidation or esterification. Thus BCH activates the KATP channel-independent pathway of glucose signaling without raising citrate levels, without decreasing fatty acid oxidation, and without mimicking the effects of glucose and leucine on esterification. The results indicate that increased flux through the TCA cycle is sufficient to activate the KATP channel-independent pathway.  相似文献   

8.
We measured in vivo and in vitro nutrient-stimulated insulin secretion in late gestation fetal sheep to determine whether an intrinsic islet defect is responsible for decreased glucose-stimulated insulin secretion (GSIS) in response to chronic hypoglycemia. Control fetuses responded to both leucine and lysine infusions with increased arterial plasma insulin concentrations (average increase: 0.13 +/- 0.05 ng/ml leucine; 0.99 +/- 0.26 ng/ml lysine). In vivo lysine-stimulated insulin secretion was decreased by chronic (0.37 +/- 0.18 ng/ml) and acute (0.27 +/- 0.19 ng/ml) hypoglycemia. Leucine did not stimulate insulin secretion following acute hypoglycemia but was preserved with chronic hypoglycemia (0.12 +/- 0.09 ng/ml). Isolated pancreatic islets from chronically hypoglycemic fetuses had normal insulin and DNA content but decreased fractional insulin release when stimulated with glucose, leucine, arginine, or lysine. Isolated islets from control fetuses responded to all nutrients. Therefore, chronic late gestation hypoglycemia causes defective in vitro nutrient-regulated insulin secretion that is at least partly responsible for diminished in vivo GSIS. Chronic hypoglycemia is a feature of human intrauterine growth restriction (IUGR) and might lead to an islet defect that is responsible for the decreased insulin secretion patterns seen in human IUGR fetuses and low-birth-weight human infants.  相似文献   

9.
Thirteen hypertensive patients entered a double-blind crossover trial of guanethidine and oxprenolol in combination. In nine patients who completed the trial there was an additive effect on blood pressure, but the combination had a smaller effect on heart rate than was expected from the individual effects, and side effects were not increased. During treatment with oxprenolol the plasma potassium concentration rose from 3.6 mmol (mEq)/1 to 3.9 mmol (mEq)/1. No correlation was found between the plasma oxprenolol concentration and changes in blood pressure or response to injected isoprenaline, but measurements of plasma oxprenolol concentrations were of value in determining compliance with the protocol.  相似文献   

10.
11.
Prolonged periods of "beta-cell rest" exert beneficial effects on insulin secretion from pancreatic islets subjected to a high-glucose environment. Here, we tested for effects of short-term intermittent rest achieved by diazoxide. Rat islets were cultured for 48 h with 27 mmol/l glucose alone, with diazoxide present for 2 h every 12 h or with continuous 48-h presence of diazoxide. Both protocols with diazoxide enhanced the postculture insulin response to 27 mmol/l glucose, to 200 mumol/l tolbutamide, and to 20 mmol/l KCl. Intermittent diazoxide did not affect islet insulin content and enhanced only K(ATP)-dependent secretion, whereas continuous diazoxide increased islet insulin contents and enhanced both K(ATP)-dependent and -independent secretory effects of glucose. Intermittent and continuous diazoxide alike increased postculture ATP-to-ADP ratios, failed to affect [(14)C]glucose oxidation, but decreased oxidation of [(14)C]oleate. Neither of the two protocols affected gene expression of the ion channel-associated proteins Kir6.2, sulfonylurea receptor 1, voltage-dependent calcium channel-alpha1, or Kv2.1. Continuous, but not intermittent, diazoxide decreased significantly mRNA for uncoupling protein-2. A 2-h exposure to 20 mmol/l KCl or 10 mumol/l cycloheximide abrogated the postculture effects of intermittent, but not of continuous, diazoxide. Intermittent diazoxide decreased islet levels of the SNARE protein SNAP-25, and KCl antagonized this effect. Thus short-term intermittent diazoxide treatment has beneficial functional effects that encompass some but not all characteristics of continuous diazoxide treatment. The results support the soundness of intermittent beta-cell rest as a treatment strategy in type 2 diabetes.  相似文献   

12.
The effects of beta 1 and beta 1/2 blockade on exercise capacity were studied in 9 healthy normotensive subjects. Progressive maximal bicycle ergometer tests, followed by an endurance test at 80% of maximal work load, were performed during randomized, double-blind 3 day treatment periods with placebo, atenolol (beta 1) and oxprenolol (beta 1/2). The reduction of maximal work capacity (ca. 10%) was similar with atenolol and oxprenolol, despite a more pronounced maximal heart rate reduction with atenolol (from 175 +/- 2 to 132 +/- 3 beats.min-1) than with oxprenolol (to 138 +/- 2 beats.min-1). Exercise time during the endurance test was reduced from 36 +/- 4 min with placebo to 27 +/- 3 min with atenolol (p less than 0.05) and 24 +/- 3 min with oxprenolol (p less than 0.01) (atenolol vs. oxprenolol: p less than 0.05). During the endurance test, plasma glycerol and non-esterified fatty acid concentrations were reduced with both atenolol and oxprenolol. The glycerol reduction was more pronounced with oxprenolol than with atenolol, plasma NEFA concentrations being similar. Plasma glucose and lactate concentrations were reduced by oxprenolol but not with atenolol. These data show that submaximal exercise capacity at work loads representing similar relative exercise intensities is reduced during non-selective and beta 1-selective beta blockade. This reduction may be related to the effects of beta 1 blockade on energy metabolism, with possibly an additional effect of beta 2 blockade.  相似文献   

13.
The effect of once-daily atenolol, sustained-release oxprenolol (a new formulation of oxprenolol presented as a compressed tablet in a waxed matrix), and long-acting propranolol (a new formulation presented as spheriods in a capsule) was studied in a double-blind crossover trial in 23 carefully selected hypertensive outpatients. After a run-in period with matching placebo each patient received atenolol (100 mg/day), sustained-release oxprenolol (160 mg/day), long-acting propranolol (160 mg/day), and placebo according to a randomised sequence. After four weeks'' treatment with sustained-release oxprenolol blood pressure in the two to four hours before the next dose was not significantly lower than after placebo. The effectiveness of atenolol and of the new formulation of propranolol in reducing blood pressure was confirmed. These results suggest that the present formulation of sustained-release oxprenolol should be reconsidered.  相似文献   

14.
We investigated effects of diazoxide, a selective opener of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels, against brain damage after middle cerebral artery occlusion (MCAO) in male Wistar rats. Diazoxide (0.4 or 2 mM in 30 microl saline) or saline (sham) was infused into the right lateral ventricle 15 min before MCAO. Neurological score was improved 24 h later in the animals treated with 2 mM diazoxide (13.8 +/- 0.7, n = 13) compared with sham treatment (9.5 +/- 0.2, n = 6, P < 0.01). The total percent infarct volume (MCAO vs. contralateral side) of sham treatment animals was 43.6 +/- 3.6% (n = 12). Treatment with 2 mM diazoxide reduced the infarct volume to 20.9 +/- 4.8% (n = 13, P < 0.05). Effects of diazoxide were prominent in the cerebral cortex. The protective effect of diazoxide was completely prevented by the pretreatment with 5-hydroxydecanoate (100 mM in 10 microl saline), a selective blocker of mitoK(ATP) channels (n = 6). These results indicate that selective opening of the mitoK(ATP) channel has neuroprotective effects against ischemia-reperfusion injury in the rat brain.  相似文献   

15.
Glutamate dehydrogenase (GDH) plays an important role in insulin secretion as evidenced in children by gain of function mutations of this enzyme that cause a hyperinsulinism-hyperammonemia syndrome (GDH-HI) and sensitize beta-cells to leucine stimulation. GDH transgenic mice were generated to express the human GDH-HI H454Y mutation and human wild-type GDH in islets driven by the rat insulin promoter. H454Y transgene expression was confirmed by increased GDH enzyme activity in islets and decreased sensitivity to GTP inhibition. The H454Y GDH transgenic mice had hypoglycemia with normal growth rates. H454Y GDH transgenic islets were more sensitive to leucine- and glutamine-stimulated insulin secretion but had decreased response to glucose stimulation. The fluxes via GDH and glutaminase were measured by tracing 15N flux from [2-15N]glutamine. The H454Y transgene in islets had higher insulin secretion in response to glutamine alone and had 2-fold greater GDH flux. High glucose inhibited both glutaminase and GDH flux, and leucine could not override this inhibition. 15NH4Cl tracing studies showed 15N was not incorporated into glutamate in either H454Y transgenic or normal islets. In conclusion, we generated a GDH-HI disease mouse model that has a hypoglycemia phenotype and confirmed that the mutation of H454Y is disease causing. Stimulation of insulin release by the H454Y GDH mutation or by leucine activation is associated with increased oxidative deamination of glutamate via GDH. This study suggests that GDH functions predominantly in the direction of glutamate oxidation rather than glutamate synthesis in mouse islets and that this flux is tightly controlled by glucose.  相似文献   

16.
We have previously reported that normal Wistar rats fed an isocaloric, sucrose-rich (63%) diet (SRD) developed glucose intolerance and elevated triglyceride levels in plasma (P) as well as in heart (H) and liver (L) tissue. This metabolic state was accompanied by hyperinsulinism both in vivo and in vitro, suggesting that a state of insulin resistance has developed. In order to gather information on the role of hyperinsulinemia and glucose intolerance in the development of the above lipid metabolism abnormalities, diazoxide, a known insulin release blocking agent was administered (120 mg/kg/day) together with the diet (SRD + DZX) for 22 days. Control groups fed a standard chow (STD) or the STD plus diazoxide (STD + DZX) were included in the study. Under the present experimental design, DZX was able to prevent the development of hyperinsulinism, glucose intolerance and elevated levels of triacylglycerol in plasma, heart and liver present in animals fed on a sucrose rich diet. Our results suggest that mechanisms involved in the development of this nutritionally induced syndrome may include an interaction of hyperinsulinemia, with a direct effect of sucrose on several steps of lipid metabolism.  相似文献   

17.
《Endocrine practice》2023,29(4):286-294
ObjectiveTo review the clinical presentation, causes, and diagnostic approach to spontaneous hypoglycemia in adults without diabetes mellitus.MethodsA literature review was performed using the PubMed and Google Scholar databases.ResultsHypoglycemia is uncommon in people who are not on glucose-lowering medications. Under normal physiologic conditions, multiple neural and hormonal counterregulatory mechanisms prevent the development of abnormally low levels of plasma glucose. If spontaneous hypoglycemia is suspected, the Whipple triad should be used to confirm hypoglycemia before pursuing further diagnostic workup. The Whipple criteria include the following: (1) low levels of plasma glucose, (2) signs or symptoms that would be expected with low levels of plasma glucose, and (3) improvement in those signs or symptoms when the level of plasma glucose increases. Spontaneous hypoglycemia can be caused by conditions that cause endogenous hyperinsulinism, including insulinoma, postbariatric hypoglycemia, and noninsulinoma pancreatogenous hypoglycemia. Spontaneous hypoglycemia can also be seen with critical illness, hepatic or renal dysfunction, hormonal deficiency, non–diabetes-related medications, and non–islet cell tumors. The initial diagnostic approach should begin by obtaining a detailed history of the nature and timing of the patient’s symptoms, medications, underlying comorbid conditions, and any acute illness. A laboratory evaluation should be conducted at the time of the spontaneous symptomatic episode. Supervised tests such as a 72-hour fast or mixed-meal test may be needed to recreate the situation under which the patient is likely to experience symptoms.ConclusionWe provide an overview of the physiology of counterregulatory response to hypoglycemia, its causes, and diagnostic approaches to spontaneous hypoglycemia in adults.  相似文献   

18.
Here, we examined the chronic effects of two cannabinoid receptor-1 (CB1) inverse agonists, rimonabant and ibipinabant, in hyperinsulinemic Zucker rats to determine their chronic effects on insulinemia. Rimonabant and ibipinabant (10 mg·kg?1·day?1) elicited body weight-independent improvements in insulinemia and glycemia during 10 wk of chronic treatment. To elucidate the mechanism of insulin lowering, acute in vivo and in vitro studies were then performed. Surprisingly, chronic treatment was not required for insulin lowering. In acute in vivo and in vitro studies, the CB1 inverse agonists exhibited acute K channel opener (KCO; e.g., diazoxide and NN414)-like effects on glucose tolerance and glucose-stimulated insulin secretion (GSIS) with approximately fivefold better potency than diazoxide. Followup studies implied that these effects were inconsistent with a CB1-mediated mechanism. Thus effects of several CB1 agonists, inverse agonists, and distomers during GTTs or GSIS studies using perifused rat islets were unpredictable from their known CB1 activities. In vivo rimonabant and ibipinabant caused glucose intolerance in CB1 but not SUR1-KO mice. Electrophysiological studies indicated that, compared with diazoxide, 3 μM rimonabant and ibipinabant are partial agonists for K channel opening. Partial agonism was consistent with data from radioligand binding assays designed to detect SUR1 K(ATP) KCOs where rimonabant and ibipinabant allosterically regulated 3H-glibenclamide-specific binding in the presence of MgATP, as did diazoxide and NN414. Our findings indicate that some CB1 ligands may directly bind and allosterically regulate Kir6.2/SUR1 K(ATP) channels like other KCOs. This mechanism appears to be compatible with and may contribute to their acute and chronic effects on GSIS and insulinemia.  相似文献   

19.
Ackee toxicity is associated with consumption of the fruit of the tree Blighia sapida. The problem is endemic in Jamaica, and a number of cases have been reported in the U.S. among Jamaican immigrants. Illness is associated with the method of preparation of the fruit and its ripeness. Malnourished individuals and children appear to be the most susceptible. Levels of the toxic compound, hypoglycin, which are found in the arils and seeds of the fruit, significantly decrease in the arils with ripeness (from 1000 ppm to <0.1?ppm). Symptoms of ackee poisoning in humans occur 6 to 48 hours after ingestion and include vomiting, muscular and mental exhaustion, hypoglycemia, coma and death. Intravenous glucose relieves the hypoglycemia. The most likely mechanism of action occurs through the incorporation of hypoglycin into fatty acid metabolic pathways. Hypoglycin or its primary metabolite methylenecyclopropyl-acetyl-CoA inhibits the oxidation of fatty acids and leucine and the activity of acyl-CoA dehydrogenases. The dose required to elicit acute responses is not known with any precision, nor is it possible to eliminate the likelihood of adverse effects with long-term ingestion of the toxin. Ingestion of unripe aril or pod and seeds represents a significant health hazard; this hazard diminishes considerably with the consumption of properly processed or prepared ripe fruit.  相似文献   

20.
The beta-cell ATP-sensitive potassium (KATP) channel controls insulin secretion by linking glucose metabolism to membrane excitability. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes that encode the sulfonylurea receptor 1 or the inward rectifier Kir6.2 subunit of the channel, is a major cause of congenital hyperinsulinism. Here, we report identification of a novel KCNJ11 mutation associated with the disease that renders a missense mutation, F55L, in the Kir6.2 protein. Mutant channels reconstituted in COS cells exhibited a wild-type-like surface expression level and normal sensitivity to ATP, MgADP, and diazoxide. However, the intrinsic open probability of the mutant channel was greatly reduced, by approximately 10-fold. This low open probability defect could be reversed by application of phosphatidylinositol 4,5-bisphosphates or oleoyl-CoA to the cytoplasmic face of the channel, indicating that reduced channel response to membrane phospholipids and/or long chain acyl-CoAs underlies the low intrinsic open probability in the mutant. Our findings reveal a novel molecular mechanism for loss of KATP channel function and congenital hyperinsulinism and support the importance of phospholipids and/or long chain acyl-CoAs in setting the physiological activity of beta-cell KATP channels. The F55L mutation is located in the slide helix of Kir6.2. Several permanent neonatal diabetes-associated mutations found in the same structure have the opposite effect of increasing intrinsic channel open probability. Our results also highlight the critical role of the Kir6.2 slide helix in determining the intrinsic open probability of KATP channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号