首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It is accepted that bicarbonate reabsorption in the proximal tubule is mediated by H+ secretion, but several aspects of this process have remained controversial. To examine some of these issues, we have developed a model that allows for spatial variations in the concentrations of CO2, HCO3-, and H2CO3 within the tubule lumen and cell cytoplasm, passive transport of these substances across cell membranes, carbonic anhydrase-catalyzed interconversion of HCO3- and CO2 within the cell and at the luminal membrane surface, and the corresponding uncatalyzed reactions in lumen and cell. Most of the required kinetic and transport parameters were estimated from physicochemical data in the literature, whereas intracellular pH and HCO3- permeability at the basal cell membrane, found to be the most significant parameters under normal conditions, were adjusted to yield reabsorption rates of "total CO2" (tCO2, the sum of CO2, HCO3- and H2CO3) comparable to measured values in the rat. Our results suggest that for normal carbonic anhydrase activity, almost all tCO2 leaves the lumen as CO2, yet the transepithelial differences in CO2 partial pressure does not exceed approximately 2 mm Hg. Electrochemical potential gradients favor substantial passive backleak of HCO3- from cell to lumen. Gradients in CO2 partial pressure remain small during simulated inhibition of carbonic anhydrase, with approximately 70% of tCO2 leaving the lumen as H2CO3 in this case, and the remainder as CO2. Predicted tCO2 reabsorption rates for carbonic anhydrase inhibition are approximately of normal, in good agreement with recent measurements in the rat, indicating that the concept of "carbonic acid recycling" is viable.  相似文献   

3.
This review will briefly summarize current knowledge on the basolateral ammonia transport mechanisms in the thick ascending limb (TAL) of the loop of Henle. This segment transports ammonia against a concentration gradient and is responsible for the accumulation of ammonia in the medullary interstitium, which, in turn, favors ammonia secretion across the collecting duct. Experimental data indicate that the sodium/hydrogen ion exchanger isoform 4 (NHE4; Scl9a4) is a sodium/ammonia exchanger and plays a major role in this process. Disruption of murine NHE4 leads to metabolic acidosis with inappropriate urinary ammonia excretion and decreases the ability of the TAL to absorb ammonia and to build the corticopapillary ammonia gradient. However, NHE4 does not account for the entirety of ammonia absorption by the TAL, indicating that, at least, one more transporter is involved.  相似文献   

4.
Ulas G  Olack G  Brudvig GW 《Biochemistry》2008,47(10):3073-3075
The oxidation of water to molecular oxygen by photosystem II (PSII) is inhibited in bicarbonate-depleted media. One contribution to the inhibition is the binding of bicarbonate to the non-heme iron, which is required for efficient electron transfer on the electron-acceptor side of PSII. There are also proposals that bicarbonate is required for formation of O 2 by the manganese-containing O 2-evolving complex (OEC). Previous work indicates that a bicarbonate ion does not bind reversibly close to the OEC, but it remains possible that bicarbonate is bound sufficiently tightly to the OEC that it cannot readily exchange with bicarbonate in solution. In this study, we have used NH 2OH to destroy the OEC, which would release any tightly bound bicarbonate ions from the active site, and mass spectrometry to detect any released bicarbonate as CO 2. The amount of CO 2 per PSII released by the NH 2OH treatment is observed to be comparable to the background level, although N 2O, a product of the reaction of NH 2OH with the OEC, is detected in good yield. These results strongly argue against tightly bound bicarbonate ions in the OEC.  相似文献   

5.
The thick ascending limb of Henle's loop (TAL) is polarized with respect to its conductances. The luminal membrane contains a K+ conductance which is made up by the synchronous operation of 60- to 80-pS K+ channels. The basolateral membrane contains a chloride conductance. This conductance corresponds most likely to a 30- to 60-pS Cl- channel present in this membrane. Our knowledge on the properties of the K+ channels of these cells has been increased rapidly by patch clamp studies: these K+ channels are inwardly rectifying. They are highly selective for K+ over Na+, Li+ and many other cations. They do not conduct Rb+, Cs+, NH+4 or other larger cations. In fact, all these three cations as well as choline, tetraethylammonium, lidocaine, verapamil, diltiazem, quinine, quinidine and Ba2+ inhibit these K+ channels. As apparent from kinetic studies the mechanisms of inhibition are different for the various blockers. The TAL K+ channels are downregulated by increasing cytosolic Ca2+ activity. Cytosolic adenosine trisphosphate (ATP) has a similar effect. This ATP inhibition is Ca2+ dependent. The affinity to ATP is augmented by increasing Ca2+. Cytosolic alkalinity increases the open probability of these channels, and cytosolic acidification has the opposite effect. This pH dependence is very marked. A change by 0.2 pH units leads to a more than twofold change in the open-channel probability. The basolateral chloride conductance reflects the properties of an outwardly rectifying 30- to 60-pS Cl- channel. This channel behaves, in many respects, like the Cl- channels of a multitude of Cl- transporting epithelia. It is characterized by two open and two closed states. It is highly selective for Cl- as compared with larger anions, and it is inhibited reversibly by Cl- channel blockers such as 5-nitro-2-(3-phenylpropylamino)-benzoate.  相似文献   

6.
Summary The molecular sizes of F1 me resistance plasmids from strains of Salmonella typhimurium, S. wien and S. typhi were within the range 87.9–102.6×106 daltons. DNA reassociation studies indicated that the plasmids from these hosts had at least 80% of their nucleotide sequences in common. A high proportion of F1 me plasmids cannot mediate their own transfer. The non-autotransferring property of such plasmids is the result of DNA deletion; a non-autotransferring F1 me plasmid was about 10×106 daltons shorter than autotransferring representatives of the group, and its DNA showed 100% homology with them. Plasmids of the F1 me group are incompatible with the F factor and with F1R factors. F1 me plasmids are incompatible with the fi + MP10 plasmid of S. typhimurium, whereas F and F1 factors are compatible with MP10 (Anderson et al., 1977). There was no significant DNA homology between members of the F1 me group and MP10, and these plasmids may share only a small region of DNA responsible for their incompatibility. The F1 me R factors examined had 29–37% DNA homology with the F factor, and 50–58% homology with the F1 resistance plasmid, R162. Molecular examination therefore supports the genetic differentiation of members of the F1 me group from other F-like plasmids. Both types of investigation can thus be used in epidemiological studies of bacterial strains carrying resistance or other plasmids.  相似文献   

7.
8.
Cortical thick ascending limbs of Henle's loop (cTAL) were microdissected from rabbit kidneys and cultured in a hormonally-defined medium. The cultured cells grew as a monolayer and retained the morphological and biochemical characteristics of the original tubule. Cyclic AMP production of the cultured cells was increased by human calcitonin (x13) and parathyroid hormone (x2). The cultured epithelial developed a transepithelial potential of 4.1 +/- 1.3 mV that was orientated positively towards the apical compartment. The basolateral membrane of the cells exhibited a chloride conductance sensitive to diphenylamine 2-carboxylate (DPC) and the apical membrane a barium-sensitive K+ permeability. Patch clamp analysis conducted on the apical membrane of the cells revealed the presence of three types of ionic channel. The first is a large conductance Ca(2+)-activated K+ channel (95 pS). The second K+ channel has a much smaller conductance (18.3 pS) and is insensitive to Ca2+. It may represent the conductive pathway for K+ recycling into the lumen in the original tubule. The last channel is cation selective, does not discriminate between Na+ and K+ and was found to have a conductance of 20.5 pS. Channel activity required a high cytoplasmic calcium concentration (1 mM), and was blocked by ATP (10 microM) applied on its cytoplasmic face.  相似文献   

9.
The effects of four species of denitrifying bacteria on the conversion of [15N]nitrite to trioxodinitrate (HN2O3-) and N2O and of trioxodinitrate to N2O were studied. For all species, the N2O produced in the presence of [15N]nitrite and trioxodinitrate was isotopically randomized throughout the period of incubation and was not composed at the outset predominantly of 14N2O or 14N2O plus 15N2O. The N2O produced was also heavily enriched in 15N at times when the trioxodinitrate pool was only weakly enriched in 15N. By 15N NMR, the N(2) position, but not the N(1) position, of trioxodinitrate was found to become progressively labeled with 15N during incubation with [15N]nitrite. These results argue that (a) the N-N bond of trioxodinitrate is not preserved in its conversion to N2O, (b) trioxodinitrate can be neither a free nor enzyme-bound intermediate in denitrifying bacteria, and (c) the pathways from nitrite and trioxodinitrate involve a common mononitrogen intermediate. The conclusion that this intermediate is probably nitroxyl (HNO), at least with Paracoccus denitrificans and Pseudomonas stutzeri, provides indirect evidence that N-N bond formation in denitrification can occur through the dimerization of nitroxyl.  相似文献   

10.
The binding parameters of a number of ADP or ATP analogs to the adenine nucleotide carrier in mitochondria and inside-out submitochondrial particles have been explored by means of two specific inhibitors, carboxyatractyloside and bongkrekic acid. The nucleotides tested fell into two classes depending on the shape of the binding curve. Curvilinear Scatchard plots were obtained for the binding of ADP, ATP, adenosine 5'-triphospho-gamma-1-(5-sulfonic acid)naphthylamidate [gamma-AmNS)ATP) and adenylyl (beta,gamma)-methylenediphosphate (p[CH2]ppA); on the other hand, rectilinear Scatchard plots were obtained in the case of naphthoyl-ADP (N-ADP) and 8-bromo ADP (8Br-ADP) binding. The total number of binding sites for N-ADP and 8Br-ADP could be extrapolated with good accuracy to 1.3-1.5 nmol/mg protein; this value corresponds to the number of carboxyatractyloside-binding sites in heart mitochondria (Block, M.R., Pougeois, R. and Vignais, P.V. (1980) FEBS Lett. 117, 335-340). On the other hand, because of the curvilinearity of the Scatchard plots for the binding of ADP, ATP, (gamma-AmNS)ATP and p[CH2]ppA, the total number of binding sites for these nucleotides could only be approximated to a value higher than 1 nmol/mg protein, the exact value being probably equal to that found for N-ADP and 8Br-ADP binding, i.e. 1.3-1.5 nmol/mg protein. Curvilinearity of Scatchard plots was discussed in terms of negative interactions between nucleotide-binding sites located on the same face of the adenine nucleotide carrier. A possible relationship between the features of the binding plots and the transportable nature of the nucleotide is discussed. Contrary to the enhancing effect of bongkrekic acid on [14C]ADP uptake observed essentially in nucleotide-depleted heart mitochondria (Klingenberg, M., Appel, M., Babel, W. and Aquila, H. (1983) Eur. J. Biochem. 131, 647-654), binding of bongkrekic acid to nondepleted heart mitochondria was found to partially displace previously bound [14C]ADP. These opposite effects of bongkrekic acid may be explained by assuming that bongkrekic acid is able to abolish negative cooperativity between external (cytosolic) ADP-binding sites.  相似文献   

11.
12.
Sodium transport mechanisms were investigated in plasma membrane vesicles prepared from the medullary thick ascending limb of Henle's loop (TALH) of rabbit kidney. The uptake of 22Na into the plasma membrane vesicles was investigated by a rapid filtration technique. Sodium uptake was greatest in the presence of chloride; it was reduced when chloride was replaced by nitrate, gluconate or sulfate. The stimulation of sodium uptake by chloride was seen in the presence of a chloride gradient directed into the vesicle and when the vesicles were equilibrated with NaCl, KCl plus valinomycin so that no chemical or electrical gradients existed across the vesicle (tracer exchange experiments). Furosemide decreased sodium uptake into the vesicles in a dose-dependent manner only in the presence of chloride, with a Ki of around 5 X 10(-6) M. Amiloride, at 2 mM, had no effect on the chloride-dependent sodium uptake. Similarly, potassium removal had no effect on the chloride-dependent sodium uptake and furosemide was an effective inhibitor of sodium uptake in a potassium-free medium. The results show the presence of a furosemide-sensitive sodium-chloride cotransport system in the plasma membranes of the medullary TALH. There is no evidence for a Na+/H+ exchange mechanism or a Na+ -K+ -Cl- cotransport system. The sodium-chloride cotransport system would effect the uphill transport of chloride against its electrochemical potential gradient at the luminal membrane of the cell.  相似文献   

13.
Davydov R  Kofman V  Nocek JM  Noble RW  Hui H  Hoffman BM 《Biochemistry》2004,43(20):6330-6338
Exposure of frozen solutions of oxyhemoglobin to gamma-irradiation at 77 K yields EPR- and ENDOR-active, one-electron-reduced oxyheme centers which retain the conformation of the diamagnetic precursor. EPR spectra have been collected for the centers produced in human HbO(2) and isolated alphaO(2) and betaO(2) chains, as well as alphaO(2)beta(Zn), alpha(Zn)betaO(2), and alphaO(2)beta(Fe(3+)) hybrids, each in frozen buffer and in frozen glasses that form in the presence of glycols and sugars and also in the presence of IHP. These reveal two spectroscopically distinct classes of such ferriheme centers (g(1) 相似文献   

14.
Substantial extrasplanchnic metabolism of estrogens is known to occur in humans and dogs. As part of an investigation into the anatomic sites of such metabolism, the extraction of estrogens by the hind limb of the dog was studied during a constant infusion of [3H]estrone. Simultaneous femoral artery (A) and femoral vein (FV) plasma samples were obtained and analyzed for total radioactivity, unconjugated and conjugated radioactivity, for [3H]estrone and for its metabolites estradiol-17β, estrone sulfate and estrone glucosiduronate. The percent extraction across the hind limb was calculated [100(1-FV/A)]. The mean percent extraction ± SE of total, conjugated and unconjugated radioactivity was 31 ± 3.9, 27 ± 4.4 and 16 ± 3.7 respectively, indicating significant net uptake of these moieties by the hind limb (P<.01). Mean percent extractions ± SE for estrone and estradiol-17β were 40 ± 4.9 and 32 ± 2.7, indicating significant net uptake of these specific unconjugated estrogens by the hind limb (P<.01). The mean percent extraction of estrone glucosiduronate was 16 ± 3.1 indicating significant net uptake of this conjugate (P<.01). However, the mean percent extraction of estrone sulfate was negative (?12 ± 4.1) indicating net production of this conjugate by the hind limb (P<.01). Since the net uptake of total radioactivity cannot be explained on the basis of metabolism by the hind limb, the lymphatics were investigated as an alternate efferent pathway. In similar experiments the thoracic duct was cannulated, the estrogens in lymph were analyzed and compared with those in femoral artery plasma. Each estrogen measured in plasma appeared in lymph within 10 minutes following the start of the [3H]estrone infusion. The lymph/femoral artery concentration ratios reached a plateau at 70–100 minutes after the start of the infusion. The plateau concentrations were 20–70% of those in plasma. It is suggested that removal of estrogens in the lymph may account, in part at least, for the net uptake of total radioactivity across the hind limb calculated from the plasma data.  相似文献   

15.
Summary In an effort to investigate the functional relationship between cell-specific work and intracellular degradative processes, the effect of furosemide on cellular autophagy was investigated in two different portions of the nephron, namely, the thick ascending limb of Henle's loop (TAL), which is a main target of this drug, and the proximal convoluted tubule (PCT) as a reference structure. Eight male adult rats were treated with furosemide (60 mg/kg body weight, s.c.). Eight control animals received physiological saline. 1 to 4 h after the injections the animals were killed by perfusion fixation. Small specimens of kidney tissue from the inner stripe of the outer medulla and from the outer cortex were processed for electron microscopy; they were investigated morphometrically for volume fraction and numerical density of autophagic vacuoles (AVs). A significant increase of both parameters (volume fraction: 0.42 × 10-4 to 1.09 × 10-4; numerical density: 4.2 × 105/mm3 to 15.5 × 105/mm3) was seen under the influence of furosemide in TAL cells, whereas PCT cells did not show a significant increase in volume fraction or any increase in numerical density of AVs. These data suggest that the functional unloading of TAL, via blocking of the Na+- 2Cl- — K+ co-transport by furosemide, results in adaptative structural unloading, i.e., an increased sequestration of cytoplasmic components into AVs, within a short-time interval.  相似文献   

16.
17.
The time course of the (1 leads to 4)-alpha-D-glucopyranosyltransfer reactions catalyzed by the cyclodextrin glycosyltransferase ((1 leads to 4)-alpha-D-glucan: [(1 leads to 4)-alpha-D-glucopyranosyl]transferase (cyclizing), EC 2.4.1.19, CGT) from Klebsiella pneumoniae was studied with several commercial amyloses, potato starch, and amylopectin, respectively. Amyloses were poor substrates for the cyclization reaction. In the initial phase of the transfer reactions, the CGT catalyzed a rapid shortening of the amylose chains. The rate of this shortening reaction was significantly accelerated by addition of maltooligosaccharides. Maximum rate of cyclohexaamylose formation was reached with amylose chains sufficiently short (less than Glc100) for the cyclization reaction. Cyclohexaamylose was formed with maximum rate from amyloses containing amylopectin impurities in the initial phase of the transfer reactions, suggesting that the non-reducing ends of the outer amylopectin chains serve as acceptors for the disproportionation of the amylose. Accordingly, water-soluble, high-molecular-weight products containing higher percentages of lengthened outer-chains were obtained from potato starch or amylopectin. In the course of the transfer reactions, only traces of smaller maltooligosaccharides were detected chromatographically.  相似文献   

18.
19.
Using artificial electron donors and acceptors, it is shown here that the major HCO3- effect in the Hill reaction is after the "primary" electron acceptor (Q) of Photosystem II and before the site of action of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (at the plastoquinone pool). Chloroplasts in the presence of both 3-(3',4'-dichlorophenyl)-1,1-dimethylurea, which blocks electron flow from the reduced primary acdeptor Q- to the plastoquinone pool, and silicomolybdate, which accepts electrons from Q-, show no significant bicarbonate stimulation of electron flow. However, a 6-7 fold stimulation is clearly observed when oxidized diaminodurene, as an electron acceptor, and dibromothymoquinone, as an inhibitor of electron flow beyond the plastoquinone pool, are used. In the same chloroplast preparation no measurable effect of bicarbonate is observed in a Photosystem I reaction as monitored by electron flow from reduced diaminodurene to methyl viologen in the presence of 3- (3',4'-dichlorophenyl)-1,1-dimethylurea. The insensitivity of the bicarbonate effect to uncouplers of photophosphorylation and the dependence of this effect on the presence of a weak acid anion and on external pH are also reported.  相似文献   

20.
The GSH concentration of rabbit erythrocytes was monitored under conditions of large net transport of alanine, phenylalane and lysine in the absence of glucose. In no case was there an appreciable alteration in GSH concentration during amino acid uptake. It is suggested that the gamma-glutamyltransferase-gamma-glutamylcyclotransferase pathway does not participate in amino acid transport by these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号