首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
Glycerol and glycerol 3-phosphate uptake in Bacillus subtilis does not involve the phosphotransferase system. In spite of this, B. subtilis mutants defective in the general components of the phosphotransferase system, EnzymeI or Hpr, are unable to grow with glycerol as sole carbon and energy source. Here we show that a Hpr mutant can grow on glycerol 3-phosphate and that glycerol 3-phosphate, but not glycerol, can induce glpD encoding glycerol-3-phosphate dehydrogenase. Induction of glpD also requires the glpP gene product which is a regulator of all known glp genes. Thus the phosphotransferase system general components do not interfere with the overall regulation of the glp regulon. Revertants of a Hpr mutant which can grown on glycerol carry mutations closely linked to the glp region at 75 degrees on the B. subtilis chromosomal map. This region contains the glpP, the glpFK and the glpD operons. The glpFK operon encodes the glycerol uptake facilitator (glpF) and glycerol kinase (glpK). The present results demonstrate that one of these genes, or their gene products, is the target for phosphotransferase system control of glycerol utilisation. Furthermore we conclude that utilisation of glycerol and glycerol 3-phosphate is differently affected by the phosphotransferase system in B. subtilis.  相似文献   

6.
7.
A procedure has been devised that allows selection of mutants defective in the beta-methylgalactoside transport system (mgl) of Escherichia coli. This procedure utilizes the compound 2R-glyceryl-beta-d-galactopyranoside (glycerylgalactoside), which is known to be transported by only two transport system in E. coli, namely, the lactose and the beta-methylgalactoside transport systems. Mutants lacking glycerol-3-phosphate dehydrogenase (glpD) are sensitive to glycerol. Similarly, mutants lacking uridine diphosphate-galactose-4-epimerase (galE) are sensitive to galactose. Glycerylgalactoside is an inducer of the lactose operon and also a substrate for beta-galactosidase. Thus, a mgl(+)glpD galE lacY strain will not grow in the presence of glycerylgalactoside owing to accumulated glycerol-3-phosphate, galactose-1-phosphate, and uridine diphosphate-galactose. We have constructed such a strain and shown that mgl mutants can be obtained by selecting for those that grow in the presence of glycerylgalactoside.  相似文献   

8.
Nitrosoguanidine-induced Pseudomonas aeruginosa mutants which were unable to utilize glycerol as a carbon source were isolated. By utilizing PAO104, a mutant defective in glycerol transport and sn-glycerol-3-phosphate dehydrogenase (glpD), the glpD gene was cloned by a phage mini-D3112-based in vivo cloning method. The cloned gene was able to complement an Escherichia coli glpD mutant. Restriction analysis and recloning of DNA fragments located the glpD gene to a 1.6-kb EcoRI-SphI DNA fragment. In E. coli, a single 56,000-Da protein was expressed from the cloned DNA fragments. An in-frame glpD'-'lacZ translational fusion was isolated and used to determine the reading frame of glpD by sequencing across the fusion junction. The nucleotide sequence of a 1,792-bp fragment containing the glpD region was determined. The glpD gene encodes a protein containing 510 amino acids and with a predicted molecular weight of 56,150. Compared with the aerobic sn-glycerol-3-phosphate dehydrogenase from E. coli, P. aeruginosa GlpD is 56% identical and 69% similar. A similar comparison with GlpD from Bacillus subtilis reveals 21% identity and 40% similarity. A flavin-binding domain near the amino terminus which shared the consensus sequence reported for other bacterial flavoproteins was identified.  相似文献   

9.
Cloning of the glycerol kinase gene of Bacillus subtilis   总被引:1,自引:0,他引:1  
A 3.5 kb fragment of Bacillus subtilis DNA which contains wild type alleles of mutations in glpK (glycerol kinase) and glpD (glycerol-3-phosphate [G3P] dehydrogenase) was cloned in plasmid pHV32 in Escherichia coli. The cloned fragment expresses glycerol kinase in B. subtilis mutants carrying the mutations glpK11 and recE4 after induction with glycerol or G3P whereas it does not express G3P dehydrogenase. The cloned fragment thus contains the complete glpK but probably only part of glpD.  相似文献   

10.
11.
12.
13.
14.
Glycerol uptake, glycerol kinase (EC 2.7.1.30) and glycerol-3-phosphate dehydrogenase (EC 1.1.99.5) activities are specifically induced during growth ofPseudomonas aeruginosa PAO on either glycerol or glycerol-3-phosphate. Mutants of strain PAO unable to grow on both glycerol and glycerol-3-phosphate were isolated. Mutant PFB 121 was deficient in an inducible, membrane-bound, pyridine nucleotide-independent, glycerol-3-phosphate dehydrogenase activity and PFB 82 was deficient in glycerol uptake and glycerol kinase and glycerol-3-phosphate dehydrogenase activities. Each mutant spontaneously reverted to wild phenotype, which indicates that each contained a single genetic lesion. These results demonstrate that membrane-bound, inducible glycerol-3-phosphate dehydrogenase is required for catabolism of both glycerol and glycerol-3-phosphate and provide suggestive evidence for a single regulatory locus that controls the synthesis of glycerol uptake, glycerol kinase, and glycerol-3-phosphate dehydrogenase inP. aeruginosa.  相似文献   

15.
A PCR-based genotyping system that detects divergence of IS100 locations within the Yersinia pestis genome was used to characterize a large collection of isolates of different biovars and geographical origins. Using sequences derived from the glycerol-negative biovar orientalis strain CO92, a set of 27 locus-specific primers was designed to amplify fragments between the end of IS100 and its neighboring gene. Geographically diverse members of the orientalis biovar formed a homogeneous group with identical genotype with the exception of strains isolated in Indochina. In contrast, strains belonging to the glycerol-positive biovar antiqua showed a variety of fingerprinting profiles. Moreover, strains of the biovar medievalis (also glycerol positive) clustered together with the antiqua isolates originated from Southeast Asia, suggesting their close phylogenetic relationships. Interestingly, a Manchurian biovar antiqua strain Nicholisk 51 displayed a genotyping pattern typical of biovar orientalis isolates. Analysis of the glycerol pathway in Y. pestis suggested that a 93-bp deletion within the glpD gene encoding aerobic glycerol-3-phosphate dehydrogenase might account for the glycerol-negative phenotype of the orientalis biovar. The glpD gene of strain Nicholisk 51 did not possess this deletion, although it contained two nucleotide substitutions characteristic of the glpD version found exclusively in biovar orientalis strains. To account for this close relationship between biovar orientalis strains and the antiqua Nicholisk 51 isolate, we postulate that the latter represents a variant of this biovar with restored ability to ferment glycerol. The fact that such a genetic lesion might be repaired as part of the natural evolutionary process suggests the existence of genetic exchange between different Yersinia strains in nature. The relevance of this observation on the emergence of epidemic Y. pestis strains is discussed.  相似文献   

16.
Structural gene mutants of the glycogen biosynthetic enzymes adenosine diphosphate glucose pyrophosphorylase (glgC) and glycogen synthase (glgA) were isolated and partially characterized. The cotransduction frequencies of these genes with the aspartic semialdehyde dehydrogenase (asd) and glycerol-3-phosphate dehydrogenase (glpD) genes suggested the unambiguous gene order of glpD glgA glgC asd. The results of the three-factor cross glpD- glgA- glgC+ X glpD+ glgA+ glgC- were consistent with the proposed order. A simultaneous and approximately equivalent derepression of the glgC, glgA, and glgB (branching enzyme) gene products was observed in the late logarithmic-early stationary phase of growth on enriched media. These results are consistent with the coordinately regulated synthesis of the three glycogen biosynthetic enzymes in Salmonella typhimurium.  相似文献   

17.
S Iuchi  S T Cole    E C Lin 《Journal of bacteriology》1990,172(1):179-184
In Escherichia coli, sn-glycerol-3-phosphate can be oxidized by two different flavo-dehydrogenases, an anaerobic enzyme encoded by the glpACB operon and an aerobic enzyme encoded by the glpD operon. These two operons belong to the glp regulon specifying the utilization of glycerol, sn-glycerol-3-phosphate, and glycerophosphodiesters. In glpR mutant cells grown under conditions of low catabolite repression, the glpA operon is best expressed anaerobically with fumarate as the exogenous electron acceptor, whereas the glpD operon is best expressed aerobically. Increased anaerobic expression of glpA is dependent on the fnr product, a pleiotropic activator of genes involved in anaerobic respiration. In this study we found that the expression of a glpA1(Oxr) (oxygen-resistant) mutant operon, selected for increased aerobic expression, became less dependent on the FNR protein but more dependent on the cyclic AMP-catabolite gene activator protein complex mediating catabolite repression. Despite the increased aerobic expression of glpA1(Oxr), a twofold aerobic repressibility persisted. Moreover, anaerobic repression by nitrate respiration remained normal. Thus, there seems to exist a redox control apart from the FNR-mediated one. We also showed that the anaerobic repression of the glpD operon was fully relieved by mutations in either arcA (encoding a presumptive DNA recognition protein) or arcB (encoding a presumptive redox sensor protein). The arc system is known to mediate pleiotropic control of genes of aerobic function.  相似文献   

18.
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.  相似文献   

19.
20.
A mutant of Neurospora crassa able to grow on liquid minimal glycerol medium without evidence of conidiation and with high cell yields has been isolated and shown to be allelic to ff-1. The glycerol-specific induction of glycerokinase and glycerol-3-phosphate dehydrogenase was similar in both wild-type and mutant cells, although higher specific activities as well as higher glycerokinase cross-reacting material levels were found in fully induced mutant cells. After growth in minimal glycerol medium there is a significant reduction in wild-type cells of the activities of both pyruvate dehydrogenase and dihydrolipoyl transacetylase. This evidence indicates a relationship between the conditional acetate requirement by wild-type cells grown on glycerol medium and the levels of the pyruvate dehydrogenase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号