首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CEL-I is a C-type lectin isolated from the Holothuroidea Cucumaria echinata. This lectin shows very high N-acetylgalactosamine-binding specificity. We constructed an artificial gene encoding recombinant CEL-I (rCEL-I) using a combination of synthetic oligonucleotides, and expressed it in Escherichia coli cells. Since the recombinant protein was obtained as inclusion bodies, the latter were solubilized using urea and 2-mercaptoethanol, and the protein was refolded during the purification and dialysis steps. The purified rCEL-I showed comparable hemagglutinating activity to that of native CEL-I at relatively high Ca(2+)-concentrations, whereas it was weaker at lower Ca(2+)-concentrations due to decreased Ca(2+)-binding affinity. rCEL-I exhibited similar carbohydrate-binding specificity to native CEL-I, including strong GalNAc-binding specificity, as examined by hemagglutination inhibition assay. Comparison of the far UV-CD spectra of recombinant and native CEL-I revealed that the two proteins undergo a similar conformational change upon binding of Ca(2+). Single crystals of rCEL-I were also obtained under the same conditions as those used for the native protein, suggesting that they have similar tertiary structures. Although native CEL-I exhibited strong cytotoxicity toward cultured cells, rCEL-I showed low cytotoxicity. These results indicate that rCEL-I has a tertiary structure and carbohydrate-binding specificity similar to those of native CEL-I. Howeger, there is a subtle difference in the properties between the two proteins probably due to the additional methionine residue at the N-terminus of rCEL-I.  相似文献   

2.
Our previous studies demonstrated that CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin purified from the marine invertebrate Cucumaria echinata (Holothuroidea) showed potent cytotoxicity to several cell lines such as HeLa, MDCK and XC cells. In this study, we found that CEL-I induced increased secretion of tumour necrosis factor-alpha (TNF-alpha) and granulocyte colony stimulation factor (G-CSF) by mouse macrophage cell line RAW264.7 cells in a dose-dependent manner, whereas this cell line was highly resistant to CEL-I cytotoxicity. The cytokine-inducing activity of CEL-I was stronger than that of phytohaemagglutinin (PHA-L). A binding study using FITC-labelled CEL-I (F-CEL-I) indicated that the amount of bound F-CEL-I on RAW264.7 cells was greater than that of F-PHA-L, suggesting that the greater activity of CEL-I to induce cytokine secretion by RAW264.7 cells is partly due to the higher binding ability. Since the cell binding and cytokine-inducing activity of CEL-I were partly but significantly inhibited by the specific sugar (GalNAc), it is considered that the binding of CEL-I to cell-surface-specific saccharide moieties, which may be recognized by CEL-I with higher affinity than GalNAc, is essential for the induction of cytokine secretion. The secretion of TNF-alpha and G-CSF from CEL-I-treated RAW264.7 cells were almost completely prevented by brefeldin A (BFA), whereas increase in mRNA levels of these cytokines were not affected by BFA. Bio-Plex beads assay suggested that temporal increase in phosphorylation of extracellular-regulated kinase (ERK), c-jun NH(2)-terminal kinase (JNK) and p38 MAP kinase occurred at relatively early time following CEL-I treatment. Furthermore, the secretion of TNF-alpha and G-CSF were inhibited by specific inhibitors for these MAP kinases. These results suggest that the intracellular signal transduction through the activation of MAP kinase system is involved in CEL-I-induced cytokine secretion.  相似文献   

3.
CEL-I is one of the Ca2+-dependent lectins that has been isolated from the sea cucumber, Cucumaria echinata. This protein is composed of two identical subunits held by a single disulfide bond. The complete amino acid sequence of CEL-I was determined by sequencing the peptides produced by proteolytic fragmentation of S-pyridylethylated CEL-I. A subunit of CEL-I is composed of 140 amino acid residues. Two intrachain (Cys3-Cys14 and Cys31-Cys135) and one interchain (Cys36) disulfide bonds were also identified from an analysis of the cystine-containing peptides obtained from the intact protein. The similarity between the sequence of CEL-I and that of other C-type lectins was low, while the C-terminal region, including the putative Ca2+ and carbohydrate-binding sites, was relatively well conserved. When the carbohydrate-binding activity was examined by a solid-phase microplate assay, CEL-I showed much higher affinity for N-acetyl-D-galactosamine than for other galactose-related carbohydrates. The association constant of CEL-I for p-nitrophenyl N-acetyl-beta-D-galactosaminide (NP-GalNAc) was determined to be 2.3 x 10(4) M(-1), and the maximum number of bound NP-GalNAc was estimated to be 1.6 by an equilibrium dialysis experiment.  相似文献   

4.
Tetranectin, a trimeric plasminogen-binding C-type lectin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Tetranectin, a plasminogen-binding protein belonging to the family of C-type lectins, was expressed in E. coli and converted to its native form by in vitro refolding and proteolytic processing. Recombinant tetranectin-as well as natural tetranectin from human plasma-was shown by chemical cross-linking analysis and SDS-PAGE to be a homo-trimer in solution as are other known members of the collectin family of C-type lectins. Biochemical evidence is presented showing that an N-terminal domain encoded within exons 1 and 2 of the tetranectin gene is necessary and sufficient to govern subunit trimerization.  相似文献   

5.
A galactose-specific C-type lectin has been purified from a pupal extract of Drosophila melanogaster. This lectin gene, named DL1 (Drosophila lectin 1), is part of a gene cluster with the other two galactose-specific C-type lectin genes, named DL2 (Drosophila lectin 2) and DL3 (Drosophila lectin 3). These three genes are expressed differentially in fruit fly, but show similar haemagglutinating activities. The present study characterized the biochemical and biological properties of the DL1 protein. The recombinant DL1 protein bound to Escherichia coli and Erwinia chrysanthemi, but not to other Gram-negative or any other kinds of microbial strains that have been investigated. In addition, DL1 agglutinated E. coli and markedly intensified the association of a Drosophila haemocytes-derived cell line with E. coli. For in vivo genetic analysis of the lectin genes, we also established a null-mutant Drosophila. The induction of inducible antibacterial peptide genes was not impaired in the DL1 mutant, suggesting that the galactose-specific C-type lectin does not participate in the induction of antibacterial peptides, but possibly participates in the immune response via the haemocyte-mediated mechanism.  相似文献   

6.
Unique tissue distribution of a mouse macrophage C-type lectin   总被引:7,自引:2,他引:5  
We examined mouse tissue for the expression of macrophage galactose/N-acetylgalactosamine-specificC-type lectin using a rat monoclonal antibody (mAb) specificfor this lectin (mAb LOM-14). The binding of mAb LOM-14 wasdetected in detergent extracts from tissue by means of immunoblottinganalysis. It was shown that this mAb did not cross-react withmouse hepatic lectins, a structural homologue. The macrophagelectin was widely distributed among various mouse tissues asjudged by the affinity isolation followed by the immunochemicaldetection. The exceptions were brain, liver, kidney, small intestine,and peripheral blood. Extracts from these organs exhibited,at best, very weak signals upon mAb LOM-14 binding, despitethe presence of cells expressing macrophage markers. The mostintense signal was observed in the extract from skin, suggestingthat cells expressing this lectin are abundant in skin. Thetissues shown to contain this lectin were further investigatedby immunohistochemical staining of the sections. Cells weredistributed in the connective tissue and in the interstice,particularly the dermis and subcutaneous layer of skin. Cellslocalized in the epithelium of skin (epidermis) or other epitheliathat we examined were not stained. Perivascular localizationof cells stained with mAb LOM-14 was also demonstrated in cardiacand skeletal muscle tissues. Immunoelectron microscopy revealedthe presence of this lectin along the rough endoplasmic reticulum.In conclusion, the distribution of C-type lectin specific forgalactose/N-acetylgalactosamine in mice was unique. The connectivetissue-specific distribution should provide important informationon the biological role of this lectin. lectin macrophage calcium-type lectin connective tissue  相似文献   

7.
A lectin-cationic peptide conjugate, 4(3)-CEL-I, was prepared from an invertebrate C-type lectin, CEL-I, and an amphiphilic alpha-helical peptide, 4(3)-beta Ala2 [Ac-(Leu-Ala-Arg-Leu)3-beta Ala2]. When 4(3)-CEL-I was incubated with rabbit erythrocytes, hemolysis was observed, especially at basic pH. Inhibition experiment using some carbohydrates suggested that hemolytic activity of 4(3)-CEL-I was caused by the interaction between 4(3)-beta Ala2 portion in the conjugate and the lipid bilayer after binding to the carbohydrate chains on the cell surface by the lectin activity of CEL-I.  相似文献   

8.
Cassava (Manihot esculenta Crantz) is a known source of linamarin, but difficulties associated with its isolation have prevented it from being exploited as a major source. A batch adsorption process using activated carbon proved successful in its isolation, with ultrafiltration playing a pivotal role in its purification. Thirty-two minutes of contact time was required for 60 g of extract, yielding 1.7 g of purified product. Picrate paper, infra-red and 1HNMR analysis confirmed the presence and structure of linamarin. Cytotoxic effects of linamarin on MCF-7, HT-29 and HL-60 cells were determined using the MTT assay. Cytotoxic effects were significantly increased in the presence of linamarase (β-glucosidase), with a 10–fold decrease in the IC50 values obtained for HL-60 cells. This study thus describes a method for the isolation and purification of linamarin from cassava, as well as its cytotoxicity potential.  相似文献   

9.
Dendritic cells (DCs) are the most potent APCs of the immune system that seed the peripheral tissues and lymphoid organs. In an immature state, DCs sample their surroundings for incoming pathogens. Upon Ag encounter, DCs mature and migrate to the lymph node to induce adaptive immune responses. The C-type macrophage galactose-type lectin (MGL), expressed in immature DCs, mediates binding to glycoproteins carrying GalNAc moieties. In the present study, we demonstrate that MGL ligands are present on the sinusoidal and lymphatic endothelium of lymph node and thymus, respectively. MGL binding strongly correlated with the expression of the preferred MGL ligand, alpha-GalNAc-containing glycan structures, as visualized by staining with the alpha-GalNAc-specific snail lectin Helix pomatia agglutinin. MGL(+) cells were localized in close proximity of the endothelial structures that express the MGL ligand. Strikingly, instead of inducing migration, MGL mediated retention of human immature DCs, as blockade of MGL interactions enhanced DC trafficking and migration. Thus, MGL(+) DCs are hampered in their migratory responses and only upon maturation, when MGL expression is abolished; these DCs will be released from their MGL-mediated restraints.  相似文献   

10.
Nanoparticles (NPs) have extensive industrial, biotechnological, and biomedical/pharmaceutical applications, leading to concerns over health risks to humans and biota. Among various types of nanoparticles, silica nanoparticles (SiO2 NPs) have become popular as nanostructuring, drug delivery, and optical imaging agents. SiO2 NPs are highly stable and could bioaccumulate in the environment. Although toxicity studies of SiO2 NPs to human and mammalian cells have been reported, their effects on aquatic biota, especially fish, have not been significantly studied. Twelve adherent fish cell lines derived from six species (rainbow trout, fathead minnow, zebrafish, goldfish, haddock, and American eel) were used to comparatively evaluate viability of cells by measuring metabolic impairment using Alamar Blue. Toxicity of SiO2 NPs appeared to be size-, time-, temperature-, and dose-dependent as well as tissue-specific. However, dosages greater than 100 μg/mL were needed to achieve 24 h EC50 values (effective concentrations needed to reduce cell viability by 50%). Smaller SiO2 NPs (16 nm) were relatively more toxic than larger sized ones (24 and 44 nm) and external lining epithelial tissue (skin, gills)-derived cells were more sensitive than cells derived from internal tissues (liver, brain, intestine, gonads) or embryos. Higher EC50 values were achieved when toxicity assessment was performed at higher incubation temperatures. These findings are in overall agreement with similar human and mouse cell studies reported to date. Thus, fish cell lines could be valuable for screening emerging contaminants in aquatic environments including NPs through rapid high-throughput cytotoxicity bioassays.  相似文献   

11.
Akudugu J  Gäde G  Böhm L 《Life sciences》2001,68(10):1153-1160
The neem toxin azadirachtin A exhibits selective toxicity on insects. Despite its well-proven efficacy, the mode of action of this toxin remains obscure. The toxicity on vertebrate cells compared to insect cells is also not well characterized. We have cultivated six human glioblastoma cell lines G-28, G-112, G-60 (TP53 mutant) and G-44, G-62, G-120 (TP53 wild-type) in the presence of 28 microM of azadirachtin. This toxin concentration was chosen because it represents the 25 to 50% lethal dose in the glioma cells. Toxicity was measured in terms of cell proliferation (binucleation index), formation of micronuclei and cell survival. In the TP53 mutant cell lines, azadirachtin reduced the proportion of dividing cells and induced formation of micronuclei. Except for G-44 which showed a decrease in binucleation index, proliferation in the TP53 wild-type cell lines was unaffected by azadirachtin. In the TP53 wild-type cell lines, the decrease in micronuclei frequency is attributed to fewer cells entering mitosis to produce micronuclei. This is also apparent from the low surviving fractions. Cell survival was suppressed by 25-69% in all cell lines. The reduction of cell survival is a clear indication that azadirachtin affects reproductive integrity and cell division. The induction of micronuclei reflects DNA damage. Similar studies on damage induction in insect cell lines could elucidate the processes which precede the antifeedant and antimoulting effects of azadirachtin and other neem toxins in insects.  相似文献   

12.
13.
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, a novel C-type lectin gene from scallop Argopecten irradians (designated as AiCTL-6) was cloned by rapid amplification of cDNA ends (RACE) approach based on expression sequence tag (EST) analysis. The full-length cDNA of AiCTL-6 was 1080 bp. The open reading frame encoded a polypeptide of 307 amino acids, including a signal sequence and a C-type lectin-like domain (CTLD) of 150 amino acid residues longer than any usual CTLD. It contained six conserved cysteine residues involved in the formation of three internal disulfide bridges and an EPD (Glu269-Pro270-Asp271) motif at the Ca2+-binding site 2. The deduced amino acid sequence of AiCTL-6 showed high similarity to members of C-type lectin superfamily. By fluorescent quantitative real-time PCR, AiCTL-6 mRNA was found mainly in hepatopancreas and gill, and marginally expressed in other tissues. After the scallops were challenged by Listonella anguillarum for 6 h, the mRNA expression of AiCTL-6 was up-regulated significantly to 7.2-fold compared to the blank group. While at 9 h post Micrococcus luteus challenge, its expression level was 60.1 times higher than that of the blank group. The functional activity of AiCTL-6 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiCTL-6 could agglutinate Gram-negative bacteria Ecoli TOP10F′, Gram-positive bacteria M. luteus and Staphylococcus aureus. These results collectively suggested that AiCTL-6, as a novel member of C-type lectin family, contributed to the host defense mechanisms against invading microorganism in A. irradians.  相似文献   

14.
The eosinophil major basic protein (EMBP), a constituent of the eosinophil secondary granule, is implicated in cytotoxicity and mediation of allergic disorders such as asthma. It is a member of the C-type lectin family, but lacks a Ca(2+)- and carbohydrate-binding site as seen in other members of this family. Here, we report the crystal structure of EMBP in complex with a heparin disaccharide and in the absence of Ca(2+), the first such report of any C-lectin with this sugar. We also provide direct evidence of binding of EMBP to heparin and heparin disaccharide by surface plasmon resonance. We propose that the sugars recognized by EMBP are likely to be proteoglycans such as heparin, leading to new interpretations for EMBP function.  相似文献   

15.
Many parasitic nematodes live for surprisingly long periods in the tissues of their hosts, implying sophisticated mechanisms for evading the host immune system. The nematode Toxocara canis survives for years in mammalian tissues, and when cultivated in vitro, secretes antigens such as TES-32. From the peptide sequence, we cloned TES-32 cDNA, which encodes a 219 amino-acid protein that has a domain characteristic of host calcium-dependent (C-type) lectins, a family of proteins associated with immune defence. Homology modelling predicted that TES-32 bears remarkable structural similarity to mammalian immune-system lectins. Native TES-32 acted as a functional lectin in affinity chromatography. Unusually, it bound both mannose- and galactose-type monosaccharides, a pattern precluded in mammalian lectins by a constraining loop adjacent to the carbohydrate-binding site. In TES-32, this loop appeared to be less obtrusive, permitting a broader range of ligand binding. The similarity of TES-32 to host immune cell receptors suggests a hitherto unsuspected strategy for parasite immune evasion.  相似文献   

16.
A novel C-type lectin protein (CLP), lebecetin, was purified to homogeneity from the venom of Macrovipera lebetina by gel filtration on a Sephadex G75 column and ion exchange chromatography on Mono S column. Lebecetin is a basic protein with a pHi=9.9 and migrates in SDS-PAGE as a single band or two distinct bands under nonreducing and reducing conditions, respectively. These results are further confirmed by MALDI-TOF mass spectrometry that indicates a molecular mass of 29779 Da for native lebecetin and molecular masses of 15015 and 16296 Da for alpha and beta subunits, respectively. The N-terminal amino acid sequences of lebecetin subunits show a high degree of similarity with those of C-type lectin-like proteins. In addition, functional studies showed that lebecetin has a potent inhibitory effect on platelet aggregation induced by thrombin in a concentration-dependent manner. In contrast, no inhibitory effect is observed when platelets are exposed to thromboxane A2 (TxA2) mimetic (U46619) or arachidonic acid. Moreover, there was no effect either on blood coagulation or A, B and O washed human erythrocytes agglutination. Furthermore, flow cytometric analysis revealed that fluoro-isothiocyanate (FITC)-labelled lebecetin bound to human formalin fixed platelets in a saturable and concentration manner and this binding was specifically prevented by anti-glycoprotein Ib (GPIb) mAb. These observations suggest that lebecetin is a C-type lectin-like protein that selectively binds to platelet GPIb.  相似文献   

17.
We report the cloning of four distinct cDNAs and a genomic sequence encoding a multimeric serum lectin found in the blood of Atlantic salmon (Salmo salar). The sequence variation among the cDNAs as well as genomic Southern blotting analysis revealed a multi-gene family. Expression of the salmon serum lectin (SSL) was specific to kidney, as demonstrated by RT-PCR. Analysis of the 173-amino acid sequence of SSL confirmed that it is a member of the C-type lectin superfamily. Sequence alignments and intron/exon structure of the SSL gene showed it to belong to the type VII C-type lectins, which normally bind to galactose or other ligands, whereas the SSL protein sequence contains the EPN motif of mannose-binding C-type lectins, that bind mannose or related carbohydrates.  相似文献   

18.
We report the cloning of four distinct cDNAs and a genomic sequence encoding a multimeric serum lectin found in the blood of Atlantic salmon (Salmo salar). The sequence variation among the cDNAs as well as genomic Southern blotting analysis revealed a multi-gene family. Expression of the salmon serum lectin (SSL) was specific to kidney, as demonstrated by RT-PCR. Analysis of the 173-amino acid sequence of SSL confirmed that it is a member of the C-type lectin superfamily. Sequence alignments and intron/exon structure of the SSL gene showed it to belong to the type VII C-type lectins, which normally bind to galactose or other ligands, whereas the SSL protein sequence contains the EPN motif of mannose-binding C-type lectins, that bind mannose or related carbohydrates.  相似文献   

19.
CEL-I is a C-type lectin, purified from the sea cucumber Cucumaria echinata, that shows a high specificity for N-acetylgalactosamine (GalNAc). We determined the crystal structures of CEL-I and its complex with GalNAc at 2.0 and 1.7 A resolution, respectively. CEL-I forms a disulfide-linked homodimer and contains two intramolecular disulfide bonds, although it lacks one intramolecular disulfide bond that is widely conserved among various C-type carbohydrate recognition domains (CRDs). Although the sequence similarity of CEL-I with other C-type CRDs is low, the overall folding of CEL-I was quite similar to those of other C-type CRDs. The structure of the complex with GalNAc revealed that the basic recognition mode of GalNAc was very similar to that for the GalNAc-binding mutant of the mannose-binding protein. However, the acetamido group of GalNAc appeared to be recognized more strongly by the combination of hydrogen bonds to Arg115 and van der Waals interaction with Gln70. Mutational analyses, in which Gln70 and/or Arg115 were replaced by alanine, confirmed that these residues contributed to GalNAc recognition in a cooperative manner.  相似文献   

20.
C-type lectins have been demonstrated to play important roles in invertebrate innate immunity by mediating the recognition of pathogens and clearing the micro-invaders. In the present study, a C-type lectin gene (denoted as VpCTL) was identified from Venerupis philippinarum by expressed sequence tag and rapid amplification of cDNA ends approaches. The full-length cDNA of VpCTL consists of 904 nucleotides with an open-reading frame of 456 bp encoding a peptide of 151 amino acids. The deduced amino acid sequence of VpCTL shared high similarity with C-type lectins from other species. The C-type lectin domain and the characteristic EPN and WND motifs were found in VpCTL. The VpCTL mRNA was dominantly expressed in the haemocytes of the V. philippinarum. After Listonella anguillarum challenge, the temporal expression of VpCTL mRNA in haemocytes was increased by 97- and 84-fold at 48 and 96 h, respectively. With high expression level in haemocytes and hepatopancreas, and the up-regulated expression in haemocytes indicted that VpCTL was perhaps involved in the immune responses to L. anguillarum challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号