首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tetramethylthiuram disulfide (TMTD) or dimethyldithiocarbamate (DMDTC) induces the synthesis of cadystins, a family of heavy metal chelating isopeptides with the formula (gamma-Glu-Cys)n-Gly (n = 2,3,4,...), in the fission yeast Schizosaccharomyces pombe. Amount of cadystins synthesized in TMTD or DMDTC treated cells is less than that synthesized in CdCl2 treated cells but much more than that synthesized in ZnCl2 or CuSO4 treated cells.  相似文献   

2.
Small metal-binding peptides, cadystins, with the general structure of (gamma-Glu-Cys)n-Gly ((gamma EC)nG), were synthesized in a cell-free system of fission yeast to examine the in vivo synthetic pathway. The crude enzyme for cadystin synthesis was prepared by ammonium sulfate precipitation (75% saturation) from the 120,000 x g supernatant of the cell extract, and the excess salt in the enzyme fraction was removed by Sephadex gel filtration. Using this crude enzyme fraction, it was shown that there were two pathways for cadystin biosynthesis. One pathway is gamma-Glu-Cys (gamma EC) dipeptidyl transfer from both glutathione (gamma ECG) and cadystins to glutathione and cadystins. The other one is gamma EC polymerization from (gamma EC)n and glutathione to (gamma EC)n + i, followed by glycine addition with glutathione synthetase.  相似文献   

3.
In response to heavy metal stress, plants and certain fungi, such as the fission yeast Schizosaccharomyces pombe, synthesize small metal-binding peptides known as phytochelatins. We have identified a cadmium sensitive S. pombe mutant deficient in the accumulation of a sulfide-containing phytochelatin-cadmium complex, and have isolated the gene, designated hmt1, that complements this mutant. The deduced protein sequence of the hmt1 gene product shares sequence identity with the family of ABC (ATP-binding cassette)-type transport proteins which includes the mammalian P-glycoproteins and CFTR, suggesting that the encoded product is an integral membrane protein. Analysis of fractionated fission yeast cell components indicates that the HMT1 polypeptide is associated with the vacuolar membrane. Additionally, fission yeast strains harboring an hmt1-expressing multicopy plasmid exhibit enhanced metal tolerance along with a higher intracellular level of cadmium, implying a relationship between HMT1 mediated transport and compartmentalization of heavy metals. This suggests that tissue-specific overproduction of a functional hmt1 product in transgenic plants might be a means to alter the tissue localization of these elements, such as for sequestering heavy metals away from consumable parts of crop plants.  相似文献   

4.
Phytochelatins (PCs) are cysteine-rich peptides that chelate heavy metal ions, thereby mediating heavy metal tolerance in plants, fission yeast, and Caenorhabditis elegans. They are synthesized from glutathione by PC synthase, a specific dipeptidyltransferase. While Saccharomyces cerevisiae synthesizes PCs upon exposure to heavy metal ions, the S. cerevisiae genome does not encode a PC synthase homologue. How PCs are synthesized in yeast is unclear. This study shows that the vacuolar serine carboxypeptidases CPY and CPC are responsible for PC synthesis in yeast. The finding of a PCS-like activity of these enzymes in vivo discloses another route for PC biosynthesis in eukaryotes.  相似文献   

5.
Autophagy is a non-selective degradation process in eukaryotic cells. The genome sequence of the fission yeast Schizosaccharomyces pombe has revealed that many of the genes required for autophagy are common between the fission yeast and budding yeast, suggesting that the basic machinery of autophagy is conserved between these species. Autophagy in fission yeast is specifically induced by nitrogen starvation based on monitoring a GFP-Atg8p marker. Upon nitrogen starvation, fission yeast cells exit the vegetative cell cycle and initiate sexual differentiation to produce spores. Most of the nitrogen used for de novo protein synthesis during sporulation derives from the autophagic protein degradation system. This review focuses on the recent advances in the role of autophagy in fission yeast.  相似文献   

6.
Phytochelatins (PCs) are metal-chelating peptides produced in plants and some fungi in response to heavy metal exposure. A Cd-sensitive mutant of the fission yeast Schizosaccharomyces pombe, defective in production of a PC-Cd-sulfide complex essential for metal tolerance, was found to harbor mutations in specific genes of the purine biosynthetic pathway. Genetic analysis of the link between metal complex accumulation and purine biosynthesis enzymes revealed that genetic lesions blocking two segments of the pathway, before and after the IMP branchpoint, are required to produce the Cd-sensitive phenotype. The biochemical functions of these two segments of the pathway are similar, and a model based on the alternate use of a sulfur analog substrate is presented. The novel participation of purine biosynthesis enzymes in the conversion of the PC-Cd complex to the PC-Cd-sulfide complex in the fission yeast raises an intriguing possibility that these same enzymes might have a role in sulfur metabolism in the fission yeast S. pombe, and perhaps in other biological systems.  相似文献   

7.
8.
Summary Plants and certain fungi respond to heavy metal toxicity with the induced synthesis of metal-binding peptides known as phytochelatins (PCs). With cadmium, PCs can bind the metal to form a low molecular weight PC-Cd complex and a high molecular weight PC-Cd-S2− complex. The sulfide ions enhance the stability and Cd-binding capacity of the metal chelate, and formation of this sulfide-containing complex is associated with enhanced tolerance to cadmium. Molecular analyses of two fission yeast mutants that fail to produce a wild type level of the PC-Cd-S2− complex have determined that a vacuolar membrane transporter and several enzymes of the purine biosynthesis pathway are necessary in vivo for formation of the PC- Cd-S2− complex. A model based on vacuolar sequestration of the PC-Cd complex by an ATP-binding cassette-type transporter and its subsequent maturation into the stable PC-Cd-S2− complex via the actions of two purine biosynthetic enzymes is described. Presented in the Session-in-Depth Bioremediation through Biotechnological Means at the 1993 Congress on Cell and Tissue Culture, San Diego, CA, June 5–9, 1993.  相似文献   

9.
10.
hFis1, a novel component of the mammalian mitochondrial fission machinery   总被引:25,自引:0,他引:25  
The balance between the fission and fusion mechanisms regulate the morphology of mitochondria. In this study we have identified a mammalian protein that we call hFis1, which is the orthologue of the yeast Fis1p known to participate in yeast mitochondrial division. hFis1, when overexpressed in various cell types, localized to the outer mitochondrial membrane and induced mitochondrial fission. This event was inhibited by a dominant negative mutant of Drp1 (Drp1(K38A)), a major component of the fission apparatus. Fragmentation of the mitochondrial network by hFis1 was followed by the release of cytochrome c and ultimately apoptosis. Bcl-xL was able to block cytochrome c release and apoptosis but failed to prevent mitochondrial fragmentation. Our studies show that hFis1 is part of the mammalian fission machinery and suggest that regulation of the fission processes might be involved in apoptotic mechanisms.  相似文献   

11.
12.
13.
Molecular characterization of a rice metal tolerance protein, OsMTP1   总被引:2,自引:0,他引:2  
Yuan L  Yang S  Liu B  Zhang M  Wu K 《Plant cell reports》2012,31(1):67-79
Rice (Oryza sativa L. 'Nipponbare') cDNA subtractive suppression hybridization (SSH) libraries constructed using cadmium (Cd)-treated seedling roots were screened to isolate Cd-responsive genes. A cDNA clone, encoding the rice homolog of Metal Tolerance Protein (OsMTP1), was induced by Cd treatment. Plant MTPs belong to cation diffusion facilitator (CDF) protein family, which are widespread in bacteria, fungi, plants, and animals. OsMTP1 heterologous expression in yeast mutants showed that OsMTP1 was able to complement the mutant strains' hypersensitivity to Ni, Cd, and Zn, but not other metals including Co and Mn. OsMTP1 expression increased tolerance to Zn, Cd, and Ni in wild-type yeast BY4741 during the exponential growth phase. OsMTP1 fused to green fluorescent protein was localized in onion epidermal cell plasma membranes, consistent with an OsMTP1 function in heavy metal transporting. OsMTP1 dsRNAi mediated by transgenic assay in rice seedlings resulted in heavy metal sensitivity and changed the heavy metal accumulation in different organs of mature rice under low-concentration heavy metal stress. Taken together, our results show that OsMTP1 is a bivalent cation transporter localized in the cell membrane, which is necessary for efficient translocation of Zn, Cd and other heavy metals, and maintain ion homeostasis in plant.  相似文献   

14.
Genes encoding phytochelatin (PC) synthase have been found in higher plants, fission yeast and worm. Recently, kinetic and mutagenic analyses of recombinant PC synthase have been revealing the molecular mechanisms underlying PC synthesis, however, a conclusive model has not been established. To clarify the mechanism of PC synthase found in eukaryotes, we have compared the two-step reactions catalyzed by the prokaryotic Nostoc PC synthase (NsPCS) and the eukaryotic Arabidopsis PC synthase (AtPCS1). Comparative analysis shows that in the first step of PC synthesis corresponding to the cleavage of -glutamylcysteine (-EC) from glutathione (GSH), free GSH or PCs acts as a donor molecule to supply a -EC unit for elongation of the PC chain, and heavy metal ions are required to carry out the cleavage. Furthermore, functional analyses of various mutants of NsPCS and AtPCS1, selected by comparing the sequences of NsPCS and AtPCS1, indicate that the N-terminal region (residues 1–221) in AtPCS1 is the catalytic domain, and in this region, the Cys56 residue is associated with the PC synthesis reaction. These results enable us to propose an advanced model of PC synthesis, describing substrate specificity, heavy metal requirement, and the active site in the enzyme.  相似文献   

15.
A Cd-binding complex was isolated from water hyacinth root tissueby chromatography with DEAE-cellulose and Sephadex G-50 columnsfollowed by rechromatography on another DEAE-cellulose column.The Cd-binding complex showed a shoulder at 265 nm in the UVabsorption spectrum and three bands at 234 (negative), 256 nm(negative), and 277 nm (positive) in the CD spectrum. The peptideportion of the complex was composed of only glutamic acid and/orglutamine, cysteine, and glycine in a molar ratio of 10 : 10: 4. The molecular weight of the complex was 4,000 at neutralpHs but became lower when the complex was treated with mercaptoethanolor acid, suggesting that the complex consists of multiple oligopeptides. These results indicate that water hyacinth root Cd-bindingcomplex is identical to fission yeast Cd- BP1, composed of twoeach of cadystins A and B. (Received May 16, 1986; Accepted July 14, 1986)  相似文献   

16.
17.
Morita E 《The FEBS journal》2012,279(8):1399-1406
The endosomal sorting complexes required for transport (ESCRTs) mediate membrane fission from the cytoplasmic face of the bud neck. ESCRTs were originally identified as factors involved in multivesicular body vesicle biogenesis in yeast but have since been shown to function in other membrane fission events in mammalian cells, including enveloped virus budding and the abscission step of cytokinesis. Several recent studies have revealed that not all ESCRT factors are required for each of these biological processes, and this review summarizes our current understanding of the different requirements for ESCRT factors in these three different ESCRT-mediated mammalian membrane fission processes.  相似文献   

18.
Yeasts being simple eukaryotes are established genetic systems that are often employed to solve important biological questions. Recently, it has become evident that certain cell death programs exist in these unicellular organisms. For example, it has been shown recently that strains of the fission yeast Schizosaccharomyces pombe deficient in triacylglycerol synthesis undergo cell death with prominent apoptotic markers. This minireview is intended to discuss key developments that have rendered fission yeast useful both as a tool and as a model for apoptosis and lipoapoptosis research. It is attempted to delineate a putative signaling pathway leading to the execution of lipoapoptosis in the fission yeast. Although in its infancy, apoptosis research in the fission yeast promises exciting breakthroughs in the near future.  相似文献   

19.
The fission yeast Schizosaccharomyces pombe detoxifies cadmium by synthesizing phytochelatins, peptides of the structure (gamma-GluCys)nGly, which bind cadmium and mediate its sequestration into the vacuole. The fission yeast protein HMT2, a mitochondrial enzyme that can oxidize sulphide, appears to be essential for tolerance to multiple forms of stress, including exposure to cadmium. We found that the hmt2- mutant is unable to accumulate normal levels of phytochelatins in response to cadmium, although the cells possess a phytochelatin synthase that is active in vitro. Radioactive pulse-chase experiments demonstrated that the defect lies in two steps: the synthesis of phytochelations and the upregulation of glutathione production. Phytochelatins, once formed, are stable. hmt2- cells accumulate high levels of sulphide and, when exposed to cadmium, display bright fluorescent bodies consistent with cadmium sulphide. We propose that the precipitation of free cadmium blocks phytochelatin synthesis in vivo, by preventing upregulation of glutathione production and formation of the cadmium-glutathione thiolate required as a substrate by phytochelatin synthase. Thus, although sulphide is required for phytochelatin-mediated metal tolerance, aberrantly high sulphide levels can inhibit this pathway. Precise regulation of sulphur metabolism, mediated in part by HMT2, is essential for metal tolerance in fission yeast.  相似文献   

20.
Glutathione (gamma-glu-cys-gly; GSH) is usually present at high concentrations in most living cells, being the major reservoir of non-protein reduced sulfur. Because of its unique redox and nucleophilic properties, GSH serves in bio-reductive reactions as an important line of defense against reactive oxygen species, xenobiotics and heavy metals. GSH is synthesized from its constituent amino acids by two ATP-dependent reactions catalyzed by gamma-glutamylcysteine synthetase and glutathione synthetase. In yeast, these enzymes are found in the cytosol, whereas in plants they are located in the cytosol and chloroplast. In protists, their location is not well established. In turn, the sulfur assimilation pathway, which leads to cysteine biosynthesis, involves high and low affinity sulfate transporters, and the enzymes ATP sulfurylase, APS kinase, PAPS reductase or APS reductase, sulfite reductase, serine acetyl transferase, O-acetylserine/O-acetylhomoserine sulfhydrylase and, in some organisms, also cystathionine beta-synthase and cystathionine gamma-lyase. The biochemical and genetic regulation of these pathways is affected by oxidative stress, sulfur deficiency and heavy metal exposure. Cells cope with heavy metal stress using different mechanisms, such as complexation and compartmentation. One of these mechanisms in some yeast, plants and protists is the enhanced synthesis of the heavy metal-chelating molecules GSH and phytochelatins, which are formed from GSH by phytochelatin synthase (PCS) in a heavy metal-dependent reaction; Cd(2+) is the most potent activator of PCS. In this work, we review the biochemical and genetic mechanisms involved in the regulation of sulfate assimilation-reduction and GSH metabolism when yeast, plants and protists are challenged by Cd(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号