共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Urschel KL Shoveller AK Pencharz PB Ball RO 《American journal of physiology. Endocrinology and metabolism》2005,288(6):E1244-E1251
We have shown that first-pass intestinal metabolism is necessary for approximately 50% of whole body arginine synthesis from its major precursor proline in neonatal piglets. Furthermore, the intestine is not the site of increased arginine synthesis observed during dietary arginine deficiency. Primed constant intravenous (iv) and intraportal (ip) infusions of L-[U-14C]proline, and iv infusion of either L-[guanido-14C]arginine or L-[4,5-3H]arginine were used to measure first-pass hepatic arginine synthesis in piglets enterally fed either deficient (0.20 g.kg(-1).day(-1)) or generous (1.80 g.kg(-1).day(-1)) quantities of arginine for 5 days. Conversion of arginine to other urea cycle intermediates and arginine recycling were also calculated for both dietary treatments. Arginine synthesis (g.kg(-1).day(-1)) from proline was greater in piglets (P < 0.05) fed the deficient arginine diet in both the presence (generous: 0.07; deficient: 0.17; pooled SE = 0.01) and absence (generous: 0.06; deficient: 0.20; pooled SE = 0.01) of first-pass hepatic metabolism. There was no net arginine synthesis from proline during first-pass hepatic metabolism regardless of arginine intake. Arginine conversion to urea, citrulline, and ornithine was significantly greater (P < 0.05) in piglets fed the generous arginine diet. Calculated arginine fluxes were significantly lower (P = 0.01) for [4,5-3H]arginine than for [guanido-14C]arginine, and the discrepancy between the values was greater in piglets fed the deficient arginine diet (35% vs. 20%). Collectively, these findings show that first-pass hepatic metabolism is not a site of net arginine synthesis and that piglets conserve dietary arginine in times of deficiency by decreasing hydrolysis and increasing recycling. 相似文献
4.
P R Borum 《Biochemical Society transactions》1986,14(4):681-683
5.
Smoak IW 《Teratology》2002,65(1):19-25
BACKGROUND: Tolbutamide is a sulfonylurea oral hypoglycemic agent widely used for the treatment of non insulin-dependent diabetes mellitus. Tolbutamide produces dysmorphogenesis in rodent embryos and becomes concentrated in the embryonic heart after maternal oral dosing. Tolbutamide increases glucose metabolism in extra-pancreatic adult tissues, but this has not previously been examined in embryonic heart. METHODS: CD-1 mouse embryos were exposed on GD 9.5 to tolbutamide (0, 100, 250, or 500 microg/ml) for 6, 12, or 24 hr in whole-embryo culture. Isolated hearts were evaluated for (3)H-2DG uptake and conversion of (14)C-glucose to (14)C-lactate. Glut-1, HKI, and GRP78 protein levels were determined by Western analysis, and Glut-1 mRNA was measured by RT-PCR. RESULTS: Cardiac (3)H-2DG uptake increased after exposure to 500 microg/ml tolbutamide for 6 hr, and 100, 250, or 500 microg/ml tolbutamide for 24 hr, compared to controls. Glycolysis increased after exposure to 500 microg/ml tolbutamide for 6 or 24 hr compared to controls. Glut-1 protein levels increased in hearts exposed to 500 microg/ml tolbutamide for 12 or 24 hr, and Glut-1 mRNA increased in hearts exposed to 500 microg/ml tolbutamide for 24 hr compared to controls. HKI protein levels increased in hearts exposed to 500 microg/ml tolbutamide for 6 hr, but not 12 or 24 hr. There was no effect on GRP78 protein levels in hearts exposed to tolbutamide for 6, 12, or 24 hr. CONCLUSIONS: Tolbutamide stimulates glucose uptake and metabolism in the embryonic heart, as occurs in adult extra-pancreatic tissues. Glut-1 and HKI, but not GRP78, are likely involved in tolbutamide-induced cardiac dysmorphogenesis. 相似文献
6.
Bacterial carnitine metabolism 总被引:4,自引:0,他引:4
Hans-Peter Kleber 《FEMS microbiology letters》1997,147(1):1-9
7.
This study was designed to evaluate the effects of chronic exercise training on carnitine acetyl- and palmitoyltransferase activity and the distribution of carnitine forms and concentrations in various organs and tissues of female rats. Sprague-Dawley rats were swim trained 6 days/wk and progressed to 75-min swims twice daily (with 3% of their total body weight attached to the medial portion of the tail) at the end of 5 wk of training. Sedentary (S, n = 12) and trained (T, n = 13) animals were killed by decapitation, and the livers, kidneys, hearts, and several skeletal muscle types were removed and immediately frozen in liquid N2 and/or extracted for enzyme activity assays. Blood was collected and plasma was stored frozen. Samples were assayed for free, acid-soluble, and acid-insoluble carnitine. Free carnitine increased significantly (P less than 0.03) in T hearts. Free carnitine remained unchanged in liver, but short-chain acylcarnitines increased significantly (P less than 0.001). There was a significant (P less than 0.001) reduction in long-chain acylcarnitines in kidney in the trained rats, and plasma short-chain acylcarnitine levels also decreased (P less than 0.001). Several significant changes in carnitine distribution also occurred in the superficial and deep portions of the vastus lateralis and in the mixed gastrocnemius muscles. There was a significant reduction in carnitine acetyltransferase activity with training in both the soleus (P less than 0.02) and superficial gastrocnemius (P less than 0.002) muscles. The deep portion of the gastrocnemius muscle contained significantly higher activity than either the superficial portion or the soleus.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
This study was undertaken to quantitate the dynamic parameters of carnitine metabolism in the dog. Six mongrel dogs were given intravenous injections of L-[methyl-3H]carnitine and the specific radioactivity of carnitine was followed in plasma and urine for 19-28 days. The data were analyzed by kinetic compartmental analysis. A three-compartment, open-system model [(a) extracellular fluid, (b) cardiac and skeletal muscle, (c) other tissues, particularly liver and kidney] was adopted and kinetic parameters (carnitine flux, pool sizes, kinetic constants) were derived. In four of six dogs the size of the muscle carnitine pool obtained by kinetic compartmental analysis agreed (+/- 5%) with estimates based on measurement of carnitine concentrations in different muscles. In three of six dogs carnitine excretion rates derived from kinetic compartmental analysis agreed (+/- 9%) with experimentally measured values, but in three dogs the rates by kinetic compartmental analysis were significantly higher than the corresponding rates measured directly. Appropriate chromatographic analyses revealed no radioactive metabolites in muscle or urine of any of the dogs. Turnover times for carnitine were (mean +/- SEM): 0.44 +/- 0.05 h for extracellular fluid, 232 +/- 22 h for muscle, and 7.9 +/- 1.1 h for other tissues. The estimated flux of carnitine in muscle was 210 pmol/min/g of tissue. Whole-body turnover time for carnitine was 62.9 +/- 5.6 days (mean +/- SEM). Estimated carnitine biosynthesis ranged from 2.9 to 28 mumol/kg body wt/day. Results of this study indicate that kinetic compartmental analysis may be applicable to study of human carnitine metabolism. 相似文献
9.
10.
Myocardial carnitine and carnitine palmitoyltransferase deficiencies in patients with severe heart failure 总被引:2,自引:0,他引:2
Martín MA Gómez MA Guillén F Börnstein B Campos Y Rubio JC de la Calzada CS Arenas J 《Biochimica et biophysica acta》2000,1502(3):330-336
We studied myocardial tissue from 25 cardiac transplant recipients, who had end-stage congestive heart failure (CHF), and from 21 control donor hearts. Concentrations of total carnitine (TC), free carnitine (FC), short-chain acylcarnitines, long-chain acylcarnitines (LCAC) as well as carnitine palmitoyltransferase (CPT) activities were measured in myocardial tissue homogenates and referred to the concentration of non-collagen protein. Compared to controls, the concentrations of TC and FC as well as total CPT activities were significantly lower in patients. LCAC levels and the LCAC to FC ratio values were significantly greater in patients than in controls. While the malonyl-CoA sensitive fraction of CPT, which represents CPT I activity, was similar in patients and controls, the residual CPT activity after inhibition by malonyl-CoA, representing CPT II activity, was significantly reduced in patients compared to controls. Moreover, the activity of CPT in the presence of Triton X-100, which also represents the activity of CPT II, was significantly lower in patients than in controls. Malonyl-CoA concentrations required for half-maximal inhibition of CPT activity were significantly greater in patients than in controls. There was a linear relationship between ejection fraction (EF) values and concentrations of TC, FC, or total CPT activities. Values for LCAC and the LCAC to FC ratio were inversely related to EF values. We conclude that failing heart shows decreased total CPT and CPT II activities and carnitine deficiency that may be related to ventricle function. 相似文献
11.
van Dobbenburgh J. Onno Kasbergen Carina Slootweg Piet J. Ruigrok Tom J. C. van Echteld Cees J. A. 《Molecular and cellular biochemistry》1996,163(1):247-252
This study was undertaken to validate the potential of 31P magnetic resonance spectroscopy (MRS) as a noninvasive alternative for transvenous endomyocardial biopsy in detecting cardiac allograft rejection. Donor hearts from either Lewis rats (L) or Brown-Norway rats (BN) were transplanted into the neck of L rats resulting in a non-rejecting group L-L and a rejecting group L-BN. L-L and L-BN rats were serially studied by means of 31P MRS from postoperatine day 1–8. In addition, rejection was confirmed by histology. A similar, marked decrease in phosphocreative/-adenosinetriphosphate (PCr/ATP) ratio from day 1–3 was observed in both L-L and L-BN hearts. This ratio levelled off on postoperative day 3 and remained depressed on subsequent postoperative days in both groups, although histology showed an increase in the severity of rejection in L-BN. However, the PCr signal/noise ratio in L-BN started to decrease after day 4, coinciding with the histologic evidence of severe rejection (score IV), whereas in L-L hearts (score 0) this ratio remained unaltered until day 8. Since high-energy phosphate metabolism is affected by the unloaded status of the heterotopically transplanted heart, irrespective of rejection, the PCr/ATP ratio appears not to be a specific marker for the detection of acute rejection in this model. In contrast, the PCr S/N ratio appears to be a specific and sensitive marker of acute rejection, but only in a late, severe stage. 相似文献
12.
Influence of carnitine supplementation on muscle substrate and carnitine metabolism during exercise 总被引:3,自引:0,他引:3
Soop M.; Bjorkman O.; Cederblad G.; Hagenfeldt L.; Wahren J. 《Journal of applied physiology》1988,64(6):2394-2399
We examined 1) the effect of L-carnitine supplementation on free fatty acid (FFA) utilization during exercise and 2) exercise-induced alterations in plasma levels and skeletal muscle exchange of carnitine. Seven moderately trained human male subjects serving as their own controls participated in two bicycle exercise sessions (120 min, 50% of VO2max). The second exercise was preceded by 5 days of oral carnitine supplementation (CS; 5 g daily). Despite a doubling of plasma carnitine levels, with CS, there were no effects on exercise-induced changes in arterial levels and turnover of FFA, the relation between leg FFA inflow and FFA uptake, or the leg exchange of other substrates. Heart rate during exercise after CS decreased 7-8%, but O2 uptake was unchanged. Exercise before CS induced a fall from 33.4 +/- 1.6 to 30.8 +/- 1.0 (SE) mumol/l in free plasma carnitine despite a release (2.5 +/- 0.9 mumol/min) from the leg. Simultaneously, acylated plasma carnitine rose from 5.0 +/- 1.0 to 14.2 +/- 1.4 mumol/l, with no evidence of leg release. Consequently, total plasma carnitine increased. We concluded that in healthy subjects CS does not influence muscle substrate utilization either at rest or during prolonged exercise and that free carnitine released from muscle during exercise is presumably acylated in the liver and released to plasma. 相似文献
13.
Davis J. M.; Penney D. P.; Notter R. H.; Metlay L.; Dickerson B.; Shapiro D. L. 《Journal of applied physiology》1989,67(3):1007-1012
Neonatal lung injury from hyperoxia and mechanical hyperventilation was studied in newborn piglets hyperventilated (arterial PCO2 15-20 Torr) for 24-48 h with 100% O2 and compared with unventilated controls. Pulmonary function testing was performed, and biochemical indicators of lung injury were analyzed from tracheobronchial aspirates at 0, 24, and 48 h. Lung sections were obtained for light and electron microscopy, and bronchoalveolar lavage fluid was analyzed for surfactant composition and activity. At 24 h significant changes in tracheobronchial aspirate albumin concentrations (up 78%) and percent of polymorphonuclear cells (up 16%) were demonstrated. At 48 h a 35% decrease in dynamic lung compliance (P less than 0.05) and a 36% increase in pulmonary resistance (P less than 0.05) were noted. Further biochemical abnormalities occurred with total cell counts increased by 271% (P less than 0.02), albumin 163% (P less than 0.05), total protein 217% (P less than 0.01), and elastase 108% (P less than 0.02). Pathological analyses revealed mild lung injury at 24 h and marked inflammation, abnormal inflation patterns, flattening of Clara cells, fibrinous exudate and edema, early collagen formation, and cell necrosis observed at 48 h. Bronchoalveolar lavage surfactant had normal biophysical activity. Results demonstrate that exposure of neonatal piglets to O2 and mechanical hyperventilation for 48 h cause severe progressive lung injury. 相似文献
14.
15.
The metabolism of dietary carnitine in Drosophila melanogaster 总被引:1,自引:0,他引:1
16.
1. Carnitine acetyltransferase (EC 2.3.1.7) activity in sheep liver mitochondria was 76nmol/min per mg of protein, in contrast with 1.7 for rat liver mitochondria. The activity in bovine liver mitochondria was comparable with that of sheep liver mitochondria. Carnitine palmitoyltransferase activity was the same in both sheep and rat liver mitochondria. 2. The [free carnitine]/[acetylcarnitine] ratio in sheep liver ranged from 6:1 for animals fed ad libitum on lucerne to approx. 1:1 for animals grazed on open pastures. This change in ratio appeared to reflect the ratio of propionic acid to acetic acid produced in the rumen of the sheep under the two dietary conditions. 3. In sheep starved for 7 days the [free carnitine]/[acetylcarnitine] ratio in the liver was 0.46:1. The increase in acetylcarnitine on starvation was not at the expense of free carnitine, as the amounts of free carnitine and total acid-soluble carnitine rose approximately fivefold on starvation. An even more dramatic increase in total acid-soluble carnitine of the liver was seen in an alloxan-diabetic sheep. 4. The [free CoA]/[acetyl-CoA] ratio in the liver ranged from 1:1 in the sheep fed on lucerne to 0.34:1 for animals starved for 7 days. 5. The importance of carnitine acetyltransferase in sheep liver and its role in relieving ;acetyl pressure' on the CoA system is discussed. 相似文献
17.
18.
1. The possible role of glycerol as a precursor in neonatal gluconeogenesis in the rat was investigated by recording the activities of glycerol kinase and l-glycerol 3-phosphate dehydrogenase in the liver, kidney and other tissues around birth and during the neonatal period. 2. Blood glycerol concentrations in the neonatal rat are high. 3. There is a marked increase after birth in the ability of both liver and kidney slices to convert glycerol into glucose plus glycogen that correlates with the increase in glycerol kinase activity. 4. High hepatic and renal l-glycerol 3-phosphate dehydrogenase activities are also found in the neonatal period. 5. The marked capacity for neonatal gluconeogenesis from glycerol thus demonstrated and the role of glycerol kinase in its control are discussed. 相似文献
19.
Chronic smoking is a major risk factor of atherosclerosis and coronary heart disease. The measurement of three major thromboxane A2 metabolites, 11-dehydrothromboxane B2, 2,3-dinorthromboxane B2 and thromboxane B2, in the urines of 13 apparently healthy smokers (average 39 years, range 27-56 years) showed significantly elevated excretion rates for all thromboxane A2 metabolites as compared to 10 apparently healthy age-matched non-smokers (average 37 years, range 26-56 years). Importantly, characteristic alterations in the thromboxane A2 metabolite pattern were found in the urines of smokers. The contribution of 2,3-dinorthromboxane B2 to total measured excretion of thromboxane A2 metabolites was 59.2% in smokers (404.0 +/- 53.0 pg/mg creatinine) versus 19.4% in non-smokers (85.2 +/- 8.3 pg/mg creatinine), that of 11-dehydrothromboxane B2 35.7% in smokers (673.2 +/- 88.9 pg/mg creatinine) as compared to 75.5% in non-smokers (332.6 +/- 30.9 pg/mg creatinine). The contribution of thromboxane B2 (57.5 +/- 7.7 pg/mg creatinine in smokers versus 21.9 +/- 1.5 pg/mg creatinine in non-smokers) was similar at 5.1%. The excretion of cotinine, the major urinary metabolite of nicotine that correlates well with the reported daily cigarette consumption (r = 0.97, P less than 0.0001), showed a good correlation to thromboxane A2 metabolite excretion (2,3-dinorthromboxane B2: r = 0.92, P less than 0.0001; 11-dehydrothromboxane B2; r = 0.87, P less than 0.0001). 相似文献
20.
The piglet is an important animal model in biomedical research; many aspects of its anatomy, physiology and metabolism are similar to those of the human neonate. The authors describe a neonatal intensive care unit (NICU) for piglets. This unit allows researchers to model neonatal care in the NICU and can be used for a range of research studies. The authors hope that the model they describe can serve as a template for other investigators who would like to design their own piglet NICUs. 相似文献