首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial glutathione (mtGSH) depletion increases sensitivity of Bcl-2-overexpressing B16 melanoma (B16M)-F10 cells (high metastatic potential) to tumor necrosis factor-alpha (TNF-alpha)-induced oxidative stress and death in vitro. In vivo, mtGSH depletion in B16M-F10 cells was achieved by feeding mice (where the B16M-F10 grew as a solid tumor in the footpad) with an L-glutamine (L-Gln)-enriched diet, which promoted in the tumor cells an increase in glutaminase activity, accumulation of cytosolic L-glutamate, and competitive inhibition of GSH transport into mitochondria. L-Gln-adapted B16M-F10 cells, isolated using anti-Met-72 monoclonal antibodies and flow cytometry-coupled cell sorting, were injected into the portal vein to produce hepatic metastases. In l-Gln-adapted invasive (iB16M-Gln+) cells, isolated from the liver by the same methodology and treated with TNF-alpha and an antisense Bcl-2 oligodeoxynucleotide, viability decreased to approximately 12%. iB16M-Gln+ cell death associated with increased generation of O2*- and H2O2, opening of the mitochondrial permeability transition pore complex, and release of proapoptotic molecular signals. Activation of cell death mechanisms was prevented by GSH ester-induced mtGSH replenishment. The oxidative stress-resistant survivors showed an adaptive response that includes overexpression of manganese-containing superoxide dismutase (Mn-SOD) and catalase activities. By treating iB16M-Gln+ cells with a double anti- antisense therapy (Bcl-2 and SOD2 antisense oligodeoxynucleotides) and TNF-alpha, metastatic cell survival decreased to approximately 1%. Chemotherapy (taxol plus daunorubicin) easily removed this minimum percentage of survivors. This contribution identifies critical molecules that can be sequentially targeted to facilitate elimination of highly resistant metastatic cells.  相似文献   

2.
Highly metastatic B16 melanoma (B16M)-F10 cells, as compared with the low metastatic B16M-F1 line, have higher GSH content and preferentially overexpress BCL-2. In addition to its anti-apoptotic properties, BCL-2 inhibits efflux of GSH from B16M-F10 cells and thereby may facilitate metastatic cell resistance against endothelium-induced oxidative/nitrosative stress. Thus, we investigated in B16M-F10 cells which molecular mechanisms channel GSH release and whether their modulation may influence metastatic activity. GSH efflux was abolished in multidrug resistance protein 1 knock-out (MRP-/-1) B16M-F10 transfected with the Bcl-2 gene or in MRP-/-1 B16M-F10 cells incubated with l-methionine, which indicates that GSH release from B16M-F10 cells is channeled through MRP1 and a BCL-2-dependent system (likely related to an l-methionine-sensitive GSH carrier previously detected in hepatocytes). The BCL-2-dependent system was identified as the cystic fibrosis transmembrane conductance regulator, since monoclonal antibodies against this ion channel or H-89 (a protein kinase A-selective inhibitor)-induced inhibition of cystic fibrosis transmembrane conductance regulator gene expression completely blocked the BCL-2-sensitive GSH release. By using a perifusion system that mimics in vivo conditions, we found that GSH depletion in metastatic cells can be achieved by using Bcl-2 antisense oligodeoxynucleotide- and verapamil (an MRP1 activator)-induced acceleration of GSH efflux, in combination with acivicin-induced inhibition of gamma-glutamyltranspeptidase (which limits GSH synthesis by preventing cysteine generation from extracellular GSH). When applied under in vivo conditions, this strategy increased tumor cytotoxicity (up to approximately 90%) during B16M-F10 cell adhesion to the hepatic sinusoidal endothelium.  相似文献   

3.
High GSH content associates with high metastatic activity in B16-F10 melanoma cells cultured to low density (LD B16M). GSH homeostasis was investigated in LD B16M cells that survive after adhesion to the hepatic sinusoidal endothelium (HSE). Invasive B16M (iB16M) cells were isolated using anti-Met-72 monoclonal antibodies and flow cytometry-coupled cell sorting. HSE-derived NO and H(2)O(2) caused GSH depletion and a decrease in gamma-glutamylcysteine synthetase activity in iB16M cells. Overexpression of gamma-glutamylcysteine synthetase heavy and light subunits led to a rapid recovery of cytosolic GSH, whereas mitochondrial GSH (mtGSH) further decreased during the first 18 h of culture. NO and H(2)O(2) damaged the mitochondrial system for GSH uptake (rates in iB16M were approximately 75% lower than in LD B16M cells). iB16M cells also showed a decreased activity of mitochondrial complexes II, III, and IV, less O(2) consumption, lower ATP levels, higher O(2) and H(2)O(2) production, and lower mitochondrial membrane potential. In vitro growing iB16M cells maintained high viability (>98%) and repaired HSE-induced mitochondrial damages within 48 h. However, iB16M cells with low mtGSH levels were highly susceptible to TNF-alpha-induced oxidative stress and death. Therefore depletion of mtGSH levels may represent a critical target to challenge survival of invasive cancer cells.  相似文献   

4.
Intravenous administration to mice of trans-pterostilbene (t-PTER; 3,5-dimethoxy-4'-hydroxystilbene) and quercetin (QUER; 3,3',4',5,6-pentahydroxyflavone), two structurally related and naturally occurring small polyphenols, inhibits metastatic growth of highly malignant B16 melanoma F10 (B16M-F10) cells. t-PTER and QUER inhibit bcl-2 expression in metastatic cells, which sensitizes them to vascular endothelium-induced cytotoxicity. However, the molecular mechanism(s) linking polyphenol signaling and bcl-2 expression are unknown. NO is a potential bioregulator of apoptosis with controversial effects on Bcl-2 regulation. Polyphenols may affect NO generation. Short-term exposure (60 min/day) to t-PTER (40 microM) and QUER (20 microM) (approximate mean values of the plasma concentrations measured within the first hour after intravenous administration of 20 mg of each polyphenol/kg) down-regulated inducible NO synthetase in B16M-F10 cells and up-regulated endothelial NO synthetase in the vascular endothelium and thereby facilitated endothelium-induced tumor cytotoxicity. Very low and high NO levels down-regulated bcl-2 expression in B16M-F10 cells. t-PTER and QUER induced a NO shortage-dependent decrease in cAMP-response element-binding protein phosphorylation, a positive regulator of bcl-2 expression, in B16M-F10 cells. On the other hand, during cancer and endothelial cell interaction, t-PTER- and QUER-induced NO release from the vascular endothelium up-regulated neutral sphingomyelinase activity and ceramide generation in B16M-F10 cells. Direct NO-induced cytotoxicity and ceramide-induced mitochondrial permeability transition and apoptosis activation can explain the increased endothelium-induced death of Bcl-2-depleted B16M-F10 cells.  相似文献   

5.
Glutamine potentiates TNF-alpha-induced tumor cytotoxicity   总被引:4,自引:0,他引:4  
L-glutamine (Gln) sensitizes tumor cells to tumor necrosis factor (TNF)-alpha-induced cytotoxicity. The type and mechanism of cell death induced by TNF-alpha was studied in Ehrlich ascites tumor (EAT)-bearing mice fed a Gln-enriched diet (GED; where 30% of the total dietary nitrogen was from Gln). A high rate of Gln oxidation promotes a selective depletion of mitochondrial glutathione (mtGSH) content to approximately 58% of the level found in tumor mitochondria of mice fed a nutritionally complete elemental diet (standard diet, SD). The mechanism of mtGSH depletion involves a glutamate-induced inhibition of GSH transport from the cytosol into mitochondria. The increase in reactive oxygen intermediates (ROIs) production induced by TNF-alpha further depletes mtGSH to approximately 35% of control values, which associates with a decrease in the mitochondrial transmembrane potential (MMP), and elicits mitochondrial membrane permeabilization and release of cytochrome c. Mitochondrial membrane permeabilization was also found in intact tumor cells cultured with a Gln-enriched medium under conditions of buthionine sulfoximine (BSO)-induced selective GSH synthesis inhibition. Enforced expression of the bcl-2 gene in tumor cells could not avoid the glutamine- and TNF-alpha-induced cell death under conditions of mtGSH depletion. However, addition of GSH ester, which delivers free intracellular GSH and increases mtGSH levels, preserved cell viability. These findings show that glutamine oxidation and TNF-alpha, by causing a change in the glutathione redox status within tumor mitochondria, activates the molecular mechanism of apoptotic cell death.  相似文献   

6.
The mechanism of NO- and H(2)O(2)-induced tumor cytotoxicity was examined during B16 melanoma (B16M) adhesion to the hepatic sinusoidal endothelium (HSE) in vitro. We used endothelial nitric-oxide synthetase gene disruption and N(G)-nitro-l-arginine methyl ester-induced inhibition of nitric-oxide synthetase activity to study the effect of HSE-derived NO on B16M cell viability. Extracellular H(2)O(2) was removed by exogenous catalase. H(2)O(2) was not cytotoxic in the absence of NO. However, NO-induced tumor cytotoxicity was increased by H(2)O(2) due to the formation of potent oxidants, likely ( small middle dot)OH and (-)OONO radicals, via a trace metal-dependent process. B16M cells cultured to low density (LD cells), with high GSH content, were more resistant to NO and H(2)O(2) than B16M cells cultured to high density (HD cells; with approximately 25% of the GSH content found in LD cells). Resistance of LD cells decreased using buthionine sulfoximine, a specific GSH synthesis inhibitor, whereas resistance increased in HD cells using GSH ester, which delivers free intracellular GSH. Because NO and H(2)O(2) were particularly cytotoxic in HD cells, we investigated the enzyme activities that degrade H(2)O(2). NO and H(2)O(2) caused an approximately 75% (LD cells) and a 60% (HD cells) decrease in catalase activity without affecting the GSH peroxidase/GSH reductase system. Therefore, B16M resistance to the HSE-induced cytotoxicity appears highly dependent on GSH and GSH peroxidase, which are both required to eliminate H(2)O(2). In agreement with this fact, ebselen, a GSH peroxidase mimic, abrogated the increase in NO toxicity induced by H(2)O(2).  相似文献   

7.
Mitochondrial glutathione depletion by glutamine in growing tumor cells   总被引:3,自引:0,他引:3  
The effect of L-glutamine (Gln) on mitochondrial glutathione (mtGSH) levels in tumor cells was studied in vivo in Ehrlich ascites tumor (EAT)-bearing mice. Tumor growth was similar in mice fed a Gln-enriched diet (GED; where 30% of the total dietary nitrogen was from Gln) or a nutritionally complete elemental diet (SD). As compared with non-tumor-bearing mice, tumor growth caused a decrease of blood Gln levels in mice fed an SD but not in those fed a GED. Tumor cells in mice fed a GED showed higher glutaminase and lower Gln synthetase activities than did cells isolated from mice fed an SD. Cytosolic glutamate concentration was 2-fold higher in tumor cells from mice fed a GED ( approximately 4 mM) than in those fed an SD. This increase in glutamate content inhibited GSH uptake by tumor mitochondria and led to a selective depletion of mitochondrial GSH (mtGSH) content (not found in mitochondria of normal cells such as lymphocytes or hepatocytes) to approximately 57% of the level found in tumor mitochondria of mice fed an SD. In tumor cells of mice fed a GED, 6-diazo-5-norleucine- or L-glutamate-gamma-hydrazine-induced inhibition of glutaminase activity decreased cytosolic glutamate content and restored GSH uptake by mitochondria to the rate found in EAT cells of mice fed an SD. The partial loss of mtGSH elicited by Gln did not affect generation of reactive oxygen intermediates (ROIs) or mitochondrial functions (e.g., intracellular peroxide levels, O(2)(-)(*) generation, mitochondrial membrane potential, mitochondrial size, adenosine triphosphate and adenosine diphosphate contents, and oxygen consumption were found similar in tumor cells isolated from mice fed an SD or a GED); however, mitochondrial production ROIs upon TNF-alpha stimulation was increased. Our results demonstrate that glutamate derived from glutamine promotes an inhibition of GSH transport into mitochondria, which may render tumor cells more susceptible to oxidative stress-induced mediators.  相似文献   

8.
We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2 -generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.  相似文献   

9.
B16 melanoma F10 (B16-F10) cells with high glutathione (GSH) content show high metastatic activity in vivo. An intertissue flow of GSH, where the liver is the main reservoir, can increase GSH content in metastatic cells and promote their growth. We have studied here possible tumor-derived molecular signals that could activate GSH release from hepatocytes. GSH efflux increases in hepatocytes isolated from mice bearing liver or lung metastases, thus suggesting a systemic mechanism. Fractionation of serum-free conditioned medium from cultured B16-F10 cells and monoclonal antibody-induced neutralization techniques facilitated identification of interleukin (IL)-6 as a tumor-derived molecule promoting GSH efflux in hepatocytes. IL-6 activates GSH release through a methionine-sensitive/organic anion transporter polypeptide 1- and multidrug resistance protein 1-independent channel located on the sinusoidal site of hepatocytes. Specific siRNAs were used to knock down key factors in the main signaling pathways activated by IL-6, which revealed a STAT3-dependent mechanism. Our results show that IL-6 (mainly of tumor origin in B16-F10-bearing mice) may facilitate GSH release from hepatocytes and its interorgan transport to metastatic growing foci.  相似文献   

10.
Previously, we showed that cellular glutathione/glutathione disulfide (GSH/GSSG) play an important role in apoptotic signaling, and early studies linked mitochondrial GSH (mtGSH) loss to enhanced cytotoxicity. The current study focuses on the contribution of mitochondrial GSH transport and mitochondrial GSH/GSSG status to apoptosis initiation in a nontransformed colonic epithelial cell line, NCM460, using menadione (MQ), a quinone with redox cycling bioreactivity, as a model of oxidative challenge. Our results implicate the semiquinone radical in MQ-mediated apoptosis, which was associated with marked oxidation of the mitochondrial soluble GSH and protein-bound thiol pools, mitochondria-to-cytosol translocation of cytochrome c, and activation of caspase-9. MQ-induced apoptosis was potentiated by inhibition of mtGSH uptake in accordance with exacerbated mitochondrial GSSG (mtGSSG) and protein-SSG and compromised mitochondrial respiratory activity. Moreover, cell apoptosis was prevented by N-acetyl-L-cysteine (NAC) pretreatment, which restored cellular redox homeostasis. Importantly, mtGSH transport inhibition effectively blocked NAC-mediated protection in accordance with its failure to attenuate mtGSSG. These results support the importance of mitochondrial GSH transport and the mtGSH status in oxidative cell killing.  相似文献   

11.
Buthionine sulfoximine (BSO) has been used to deplete glutathione (GSH) in V79-379A cells in vitro, and the effect on the efficiency of oxygen and misonidazole (MISO) as radiosensitizers has been determined. Treatment with 50 or 500 microM BSO caused a rapid decline in GSH content to less than 5% of control values after 10 hr of exposure (t1/2 = 1.6 hr). Removal of BSO resulted in a rapid regeneration of GSH after 50 microM BSO, but little regeneration was observed over the subsequent 10-hr period after 500 microM. Treatment with either of these two concentrations of BSO for up to 14 hr did not affect cell growth or viability. Cells irradiated in monolayer on glass had an oxygen enhancement ratio (OER) of 3.1. After 10-14 hr pretreatment with 50 microM BSO, washed cells were radiosensitized by GSH depletion at all oxygen tensions tested. The OER was reduced to 2.6, due to greater radiosensitization of hypoxic cells than aerated ones by GSH depletion. GSH depletion had the effect of shifting the enhancement ratio vs pO2 curve to lower oxygen tensions, making oxygen appear more efficient by a factor of approximately 2, based on the pO2 required to give an OER of 2.0. In similar experiments performed with MISO, an enhancement ratio of 2.0 could be achieved with 0.2 mM MISO in anoxic BSO-pretreated cells, compared to 2.7 mM MISO in non-BSO-treated cells. Thus MISO appeared to be more efficient in GSH-depleted cells by a factor of 13.5. These apparent increases in radiosensitizer efficiency in GSH-depleted cells could be explained on the basis of radiosensitization of hypoxic cells by GSH depletion alone (ER = 1.29-1.41). The effect of GSH depletion was approximately equal at all sensitizer concentrations tested, except at high oxygen tensions, where the effect was insignificantly small. These results are consistent with hypoxic cell radiosensitization by GSH depletion and by MISO or oxygen acting by separate mechanisms.  相似文献   

12.
Abstract: Bcl-2 is an antiapoptotic protein located in the outer mitochondrial membrane. Cellular perturbations associated with programmed cell death may be the consequence of disrupted mitochondrial function as well as excessive production of reactive oxygen species (ROS). Numerous studies indicate that Bcl-2 is involved in opposing cell death induced by oxidative stimuli, but its mode of action is uncertain. We reexamined the role of Bcl-2 by using a loss-of-function model, Bcl-2 knockout mice. Brains from Bcl-2 -deficient mice had a 43% higher content of oxidized proteins and 27% lower number of cells in the cerebellum relative to wild-type mice. Incubation of cerebellar neurons from Bcl-2 +/+ brains with 0.5 m M dopamine caused 25% cell death, whereas in Bcl-2 -deficient cells, it resulted in 52% death; glial cells provided protection in both cultures. Splenocytes from Bcl-2 -deficient mice were also killed more effectively by dopamine as well as paraquat. Bcl-2 -deficient mice did not survive intraperitoneal injection of MPTP, which caused a decrease in dopamine level in the striatum of Bcl-2 +/− brains, which was more significant than in wild-type mice. When compared with Bcl-2 +/+ brains, brains of 8-day-old Bcl-2 -deficient mice had higher activities of the antioxidant enzymes GSH reductase (192%) and GSH transferase (142%), whereas at the age of 30 days, GSH peroxidase was significantly lower (66%). Activities of GSH transferase and GSH reductase increased significantly (158 and 262%, respectively) from day 8 to day 30 in Bcl-2 +/+ mice, whereas GSH peroxidase decreased (31%) significantly in Bcl-2 −/− animals. In summary, our results demonstrated enhanced oxidative stress and susceptibility to oxidants as well as altered levels of antioxidant enzymes in brains of Bcl-2 -deficient mice. It is concluded that Bcl-2 affects cellular levels of ROS, which may be due to an effect either on their production or on antioxidant pathways.  相似文献   

13.
Long noncoding RNAs (lncRNAs) play a crucial role in several malignances, involving nasopharyngeal carcinoma (NPC), a heterogeneous disease. This study investigated mechanism of serine/arginine repetitive matrix protein 2-alternative splicing (SRRM2-AS) in NPC cell proliferation, differentiation, and angiogenesis. Initially, differentially expressed lncRNAs were screened out via microarray analysis. Vascular endothelial growth factor (VEGF) protein positive rate and microvessel density (MVD) were determined in NPC and adjacent tissues. NPC CNE-2 cells were treated with a series of vector and small interfering RNA to explore the effect of SRRM2-AS in NPC. The target relationship between myosin light chain kinase (MYLK) and SRRM2-AS was verified. Levels of SRRM2-AS, MYLK, cGMP, PKG, VEGF, PCNA, Ki-67, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase 3 were determined after transfection. Finally, the effect of SRRM2-AS on cell proliferation, colony formation, angiogenesis, cell cycle, and apoptosis in NPC was evaluated. SRRM2-AS was highly expressed and MYLK was poorly expressed in NPC tissues. VEGF protein positive rate and MVD were elevated in NPC tissues. MYLK was confirmed to be a target gene of SRRM2-AS. Silencing of SRRM2-AS elevated levels of MYLK, cGMP, PKG, Bax, and Caspase 3, but decreased levels of VEGF, PCNA, Ki-67, and Bcl-2. Especially, silencing of SRRM2-AS suppressed cell proliferation, colony formation and angiogenesis, blocked cell cycle, and enhanced cell apoptosis in NPC. Our results suggested that silencing of SRRM2-AS protected against angiogenesis of NPC cells by upregulating MYLK and activating the cGMP-PKG signaling pathway, which provides a new target for NPC treatment.  相似文献   

14.
Phenethyl isothiocyanate (PEITC) is a naturally occurring cruciferous vegetable-derived compound that inhibits cell growth and induces apoptosis in oral cancer cells. However, the exact mechanism of PEITC action has not been fully elucidated. This study investigated the molecular mechanism and anticancer potential of PEITC in oral squamous cell carcinoma (OSCC) cells with various p53 statuses. PEITC inhibited the growth of OC2, SCC4, and SCC25 cells (functional p53 mutants) in a dose-dependent manner with low toxicity to normal cells. Treatment with PEITC induced reactive oxygen species production, nitric oxide generation, and GSH depletion and triggered DNA damage response as evidenced by flow cytometry, 8-OHdG formation, and comet assay. Furthermore, the subsequent activation of ATM, Chk2, and p53 as well as the increased expression of downstream proteins p21 and Bax resulted in a G2/M phase arrest by inhibiting Cdc25C, Cdc2, and cyclin B1. The PEITC-induced apoptotic cell death, following a diminished mitochondrial transmembrane potential, reduced the expression of Bcl-2 and Mcl-1, released mitochondrial cytochrome c, and activated caspase 3 and PARP cleavage. The p53 inhibitor pifithrin-α and the antioxidants N-acetylcysteine and glutathione (GSH) protected the cells from PEITC-mediated apoptosis. However, mito-TEMPO, catalase, apocynin, and L-NAME did not prevent PEITC-induced cell death, suggesting that PEITC induced G2/M phase arrest and apoptosis in oral cancer cells via a GSH redox stress and oxidative DNA damage-induced ATM–Chk2–p53-related pathway. These results provide new insights into the critical roles of both GSH redox stress and p53 in the regulation of PEITC-induced G2/M cell cycle arrest and apoptosis in OSCCs.  相似文献   

15.
Despite making up only a minor fraction of the total cellular glutathione, recent studies indicate that the mitochondrial glutathione pool is essential for cell survival. Selective depletion of mitochondrial glutathione is sufficient to sensitize cells to mitochondrial oxidative stress (MOS) and intrinsic apoptosis. Glutathione is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. Therefore, regulation of mitochondrial glutathione transport is a key factor in maintaining the antioxidant status of mitochondria. Bcl-2 resides in the outer mitochondrial membrane where it acts as a central regulator of the intrinsic apoptotic cascade. In addition, Bcl-2 displays an antioxidant-like function that has been linked experimentally to the regulation of cellular glutathione content. We have previously demonstrated a novel interaction between recombinant Bcl-2 and reduced glutathione (GSH), which was antagonized by either Bcl-2 homology-3 domain (BH3) mimetics or a BH3-only protein, recombinant Bim. These previous findings prompted us to investigate if this novel Bcl-2/GSH interaction might play a role in regulating mitochondrial glutathione transport. Incubation of primary cultures of cerebellar granule neurons (CGNs) with the BH3 mimetic HA14-1 induced MOS and caused specific depletion of the mitochondrial glutathione pool. Bcl-2 was coimmunoprecipitated with GSH after chemical cross-linking in CGNs and this Bcl-2/GSH interaction was antagonized by preincubation with HA14-1. Moreover, both HA14-1 and recombinant Bim inhibited GSH transport into isolated rat brain mitochondria. To further investigate a possible link between Bcl-2 function and mitochondrial glutathione transport, we next examined if Bcl-2 associated with the 2-oxoglutarate carrier (OGC), an inner mitochondrial membrane protein known to transport glutathione in liver and kidney. After cotransfection of CHO cells, Bcl-2 was coimmunoprecipitated with OGC and this novel interaction was significantly enhanced by glutathione monoethyl ester. Similarly, recombinant Bcl-2 interacted with recombinant OGC in the presence of GSH. Bcl-2 and OGC cotransfection in CHO cells significantly increased the mitochondrial glutathione pool. Finally, the ability of Bcl-2 to protect CHO cells from apoptosis induced by hydrogen peroxide was significantly attenuated by the OGC inhibitor phenylsuccinate. These data suggest that GSH binding by Bcl-2 enhances its affinity for the OGC. Bcl-2 and OGC appear to act in a coordinated manner to increase the mitochondrial glutathione pool and enhance resistance of cells to oxidative stress. We conclude that regulation of mitochondrial glutathione transport is a principal mechanism by which Bcl-2 suppresses MOS.  相似文献   

16.
Bcl—2基因加强表达对SK细胞编程死亡的效应   总被引:5,自引:0,他引:5  
TNF和OA诱发人神经母细胞瘤SK细胞编程死亡(PCD)。将编码Bcl-2完整蛋白质的cDNA植入pXJ 41neo载体中,由HCMV病毒启动子控制其表达。形成的正向(pBcl-2-S)及反向(pBcl-2-AS)表达质粒经转染导入SK细胞中获得稳定转染子。Western印迹表明正向转染子表达较大量的26kd Bcl-2蛋白,而反向转染子则不表达。增强表达的Bcl-2基因产物能抑制由TNF引发的PCD,但不影响由OA引发的PCD,从而证明Bcl-2基因产物抗细胞死亡效应的特异性。  相似文献   

17.
The role of glycoconjugates in cell surface and blood-borne implantation properties of murine metastatic melanoma sublines of low (B16-F1) or high (B 16-F10) potential to colonize lungs was investigated by treating melanoma cells with the antibiotic tunicamycin. This drug prevents glycosylation of glycoproteins by inhibiting the formation of lipid-linked oligosaccharide precursors. The degree of tunicamycin-mediated modifications in glycoproteins was assessed by monitoring the decrease in cell surface sialogalactoproteins by binding of 125I-labeled Ricinus communis agglutinin I. Scanning electron microscopy of tunicamycin-treated B16-F1 and B16-F10 cells showed morphologic changes such as cell rounding and formation of numerous surface blebs. Tunicamycin-treated B16-F1 and B16-F10 cells lost their lung colonization abilities when injected intravenously into C57BL/6 mice, concomitant with lowered rates of adhesion to endothelial cell monolayers, endothelial extracellular matrix (basal lamina), and polyvinyl-immobilized fibronectin in vitro, suggesting that this drug inhibits experimental metastasis by modifying the surface glycoproteins involved in determining the adhesive properties of malignant cells.  相似文献   

18.
The role of glutathione (GSH) in lectin-induced lymphocyte activation can be studied by quantitating lectin-induced nuclear size transformation in the presence of variable degrees of GSH depletion. Buthionine sulfoximine (BSO) inhibits intracellular GSH synthesis by inhibition of the enzyme gamma-glutamyl-cysteine synthetase. By combining endogenous GSH depletion in cell cultures with BSO-induced inhibition of GSH synthesis, lectin-induced lymphocyte activation can be studied at various concentrations of soluble intracellular GSH. With this approach, the percentage of lymphocytes undergoing a nuclear size transformation is minimally affected despite depletion of soluble intracellular GSH to 0.27 nmol/10(7) cells (PBL), which represents approximately 95% depletion of intracellular GSH. When soluble intracellular GSH is depleted to undetectable levels (less than 0.10 nmol/10(7) cells) there is a 10 to 12% reduction in the number of cell nuclei transformed. However, in all BSO-pretreated cultures the lectin-induced nuclear size transformation is intermediate between resting and blast-transformed lymphocytes, suggesting only partial (or aborted) activation. The partial activation response observed in BSO-pretreated cultures may be due to mobilization of the protein-bound pool of GSH, which is relatively resistant to depletion by BSO. That the inhibition of full blast transformation is truly due to GSH depletion was proven by experiments in which GSH was repleted exogenously and a full blast transformation was restored. The results of previous work in our laboratory had shown that the sulfhydryl-reactive agent 2-cyclohexene-1-one (2-CHX) was a potent inhibitor of activation at soluble intracellular GSH concentrations well above 0.27 nmol/10(7) PBL. In the present study, the dose-dependent inhibition of activation by 2-CHX was confirmed, but it was shown that the degree of inhibition caused by 2-CHX could be at least partially dissociated from the level of intracellular GSH present at the time of lectin addition and that the inhibitory potential of 2-CHX exceeded that of BSO at comparable levels of soluble intracellular GSH. Thus, the inhibitory properties of 2-CHX cannot be accounted for solely on the basis of GSH depletion.  相似文献   

19.
Costunolide (CE) is a sesquiterpene lactone well-known for its antihepatotoxic, antiulcer, and anticancer activities. The present study focused on the evaluation of the cytogenetic toxicity and cellular death-inducing potential of CE in CHO cells, an epithelial cell line derived from normal ovary cells of Chinese hamster. The cytotoxic effect denoting MTT assay has shown an IC50 value of 7.56 μM CE, where 50% proliferation inhibition occurs. The oxidative stress caused by CE was confirmed based on GSH depletion induced cell death, conspicuously absent in N-acetylcysteine (GSH precursor) pretreated cells. The evaluation of genotoxic effects of CE using cytokinesis block micronucleus assay and chromosomal aberration test has shown prominent induction of binucleated micronucleated cells and aberrant metaphases bearing chromatid and chromosomal breaks, indicating CE’s clastogenic and aneugenic potential. The apoptotic death in CE treated cells was confirmed by an increase in the number of cells in subG1 phase, exhibiting chromatin condensation and membranous phosphatidylserine translocation. The apoptosis induction follows mitochondrial mediation, evident from an increase in the BAX/Bcl-2 ratio, caspase-3/7 activity, and mitochondrial membrane permeability. CE also induces cytostasis in addition to apoptosis, substantiated by the reduced cytokinetic (replicative indices) and mitotic (mitotic indices and histone H3 Ser-10 phosphorylation) activities. Overall, the cellular GSH depletion and potential genotoxic effects by CE led the CHO cells to commit apoptosis and lowered cell division. The observed sensitivity of CHO cells doubts unintended adverse effects of CE on normal healthy cells, suggesting higher essentiality of further studies in order to establish its safety efficacy in therapeutic explorations.  相似文献   

20.
The toxicity of codeine (C), codeinone (CO), morphine (M), oxycodone (OC), pholcodine (P) and pholcodine-N-oxide (P-NOX) was assessed in HepG2 cells by determining cell viability via the measurement of lactate dehydrogenase (LDH) leakage through the membrane, depletion of reduced glutathione (GSH) and measurement of total protein content. Incubation of C, M, OC, P or P-NOX with HepG2 cells resulted in no significant loss of cell viability, depletion of GSH or decreased total protein content. In contrast, with CO there was a marked depletion of GSH with significant differences from control cells (P<0.05) being detected after as little as 5 min. This effect preceded the loss of cell viability and the decrease in total protein content. To identify the cause of GSH depletion during incubations with CO, the incubation solutions were analysed by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Analysis showed that a codeinone-glutathione conjugate (CO-SG) had been formed. This adduct was synthesised and characterised by LC/MS/MS and by nuclear magnetic resonance spectroscopy (NMR). CO-SG was quantified in the incubation solutions using the synthesised standard substance. Results obtained in this study support the hypothesis that the toxicity of CO may be partly due to GSH depletion. The absence of LDH leakage and GSH depletion in the incubations containing C or OC suggests, that the presence of both a double bond at Delta 7 and an adjoining keto-group in the 6-position are necessary to elicit the toxicity of M analogues with regard to GSH depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号