首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we investigated the signalling requirements for TNF-induced cytotoxicity modulated by the methyltransferase inhibitor S-adenosyl-L-homocysteine (AdoHcy) using the TNF-sensitive human breast carcinoma MCF7 cells and its established TNF-resistant clones (R-A1 and clone 1001). Our data indicate that inhibition of methylation reactions by adenosine plus homocysteine, which are known to condense within cells to AdoHcy, markedly potentiated TNF-induced cytotoxicity in MCF7 cells and rendered related TNF-resistant variants, TNF-sensitive by a mechanism independent from the ceramide pathway. We demonstrated that the dominant-negative derivative of FADD (FADD-DN) blocked methylation inhibition/TNF-induced cell death. Moreover, TNF-mediated cytotoxicity modulated by AdoHcy was blocked by the ICE-inhibiting peptide z-VAD-fmk, suggesting that an ICE-like protease is required for the methylation inhibition/TNF-inducible death pathway. In conclusion, these results suggest that the methyltransferase inhibitor AdoHcy potentiates TNF-induced cytotoxicity in MCF7 cells and renders TNF-resistant MCF7 clones, TNF-sensitive via the ceramide independent pathway and that FADD and the ICE-like protease are likely necessary components in transducing methylation inhibition/TNF signals for cell death.  相似文献   

2.
Arachidonic acid (AA) generated by cytosolic phospholipase A2 (cPLA2) has been suggested to function as a second messenger in tumor necrosis factor (TNF)-induced death signaling. Here, we show that cathepsin B-like proteases are required for the TNF-induced AA release in transformed cells. Pharmaceutical inhibitors of cathepsin B blocked TNF-induced AA release in human breast (MCF-7S1) and cervix (ME-180as) carcinoma as well as murine fibrosarcoma (WEHI-S) cells. Furthermore, TNF-induced AA release was significantly reduced in cathepsin B-deficient immortalized murine embryonic fibroblasts. Employing cPLA2-deficient MCF-7S1 cells expressing ectopic cPLA2 or cPLA2-deficient immortalized murine embryonic fibroblasts, we showed that cPLA2 is dispensable for TNF-induced AA release and death in these cells. Furthermore, TNF-induced cathepsin B-dependent AA release could be dissociated from the cathepsin B-independent cell death in MCF-7S1 cells, whereas both events required cathepsin B activity in other cell lines tested. These data suggest that cathepsin B inhibitors may prove useful not only in the direct control of cell death but also in limiting the damage-associated inflammation.  相似文献   

3.
Ras signaling in tumor necrosis factor-induced apoptosis.   总被引:5,自引:0,他引:5       下载免费PDF全文
Tumor necrosis factor (TNF) exerts cytotoxicity on many types of tumor cells but not on normal cells. The molecular events leading to cell death triggered by TNF are still poorly understood. Our previous studies have shown that enforced expression of an activated H-ras oncogene converted non-tumorigenic, TNF-resistant C3H 10T1/2 fibroblasts into tumorigenic cells that also became very sensitive to TNF-induced apoptosis. This finding suggested that Ras activation may play a role in TNF-induced apoptosis. In this study we investigated whether Ras activation is an obligatory step in TNF-induced apoptosis. Introduction of two different molecular antagonists of Ras, the rap1A tumor suppressor gene or the dominant-negative rasN17 gene, into H-ras-transformed 10TEJ cells inhibited TNF-induced apoptosis. Similar results were obtained with L929 cells, a fibroblast cell line sensitive to TNF-induced apoptosis, which does not have a ras mutation. While Ras is constitutively activated in TNF-sensitive 10TEJ cells, TNF treatment increased Ras-bound GTP in TNF-sensitive L929 cells but not in TNF-resistant 10T1/2 cells. Moreover, RasN17 expression blocked TNF-induced Ras-GTP formation in L929 cells. These results demonstrate that Ras activation is required for TNF-induced apoptosis in mouse fibroblasts.  相似文献   

4.
Recombinant tumor necrosis factor alpha (rTNF-alpha)-induced release of endogenous fatty acids was examined in WEHI 164 clone 13 fibrosarcoma cells using a highly sensitive HPLC method. The initial rTNF-alpha-induced extracellular release of endogenous fatty acids was dominated by 20:4n;-6, 22:4n;-6, 24:4n;-6, and 18:1n;-9 showing relative rates of 2.9, 0.9, 1.1, and 1.0, respectively. Release of endogenous AA and DNA fragmentation occurred simultaneously and preceded cell death by approx. 2 h. Methyl arachidonoyl fluorophosphonate and LY311727, specific inhibitors of Ca(2+)-dependent cytosolic PLA(2) (cPLA(2)) and secretory PLA(2) (sPLA(2)), respectively, neither blocked rTNF-alpha-induced cytotoxicity or endogenous AA release. However, both inhibitors reduced rTNF-alpha-induced release of other endogenous fatty acids. In comparison, the antioxidant butylated hydroxyanisole (BHA) completely inhibited the rTNF-alpha-induced cytotoxicity as well as AA release mediated through the TNF receptor p55, while the very similar antioxidant butylated hydroxytoluene had no effect. BHA did not inhibit recombinant cPLA(2) or sPLA(2) enzyme activity in vitro. Furthermore, stimulation of cells with rTNF-alpha for 4 h did not increase cPLA(2) enzyme activity. The data indicate that neither cPLA(2) or sPLA(2) mediate rTNF-alpha-induced apoptosis and extracellular AA release in WEHI cells. The results suggest that a BHA-sensitive signaling pathway coupled to AA release is a key event in TNF-induced cytotoxicity in these cells.  相似文献   

5.
Phospholipase A(2) (PLA(2)) enzymes encompass a superfamily of at least 13 extracellular and intracellular esterases that hydrolyze the sn-2 fatty acyl bonds of phospholipids to yield fatty acids and lysophospholipids. The purpose of this study was to characterize which phospholipase paralog regulates NMDA receptor-mediated arachidonic acid (AA) release. Using mixed cortical cell cultures containing both neurons and astrocytes, we found that [(3)H]-AA released into the extracellular medium following NMDA receptor stimulation (100 microM) increased with time and was completely prevented by the addition of the NMDA receptor antagonist MK-801 (10 microM) or by removal of extracellular Ca(2+). Neither diacylglycerol lipase inhibition (RHC-80267; 10 microM) nor selective inhibition of Ca(2+)-independent PLA(2) [bromoenol lactone (BEL); 10 microM] alone had an effect on NMDA receptor-stimulated release of [(3)H]-AA. Release was prevented by methyl arachidonyl fluorophosphonate (MAFP) (5 microM) and AACOCF(3) (1 microM), inhibitors of both cytosolic PLA(2) (cPLA(2)) and Ca(2+)-independent PLA(2) isozymes. This inhibition effectively translated to block of NMDA-induced prostaglandin (PG) production. An inhibitor of p38MAPK, SB 203580 (7.5 microM), also significantly reduced NMDA-induced PG production providing suggestive evidence for the role of cPLA(2)alpha. Its involvement in release was confirmed using cultures derived from mice deficient in cPLA(2)alpha, which failed to produce PGs in response to NMDA receptor stimulation. Interestingly, neither MAFP, AACOCF(3) nor cultures derived from cPLA(2)alpha null mutant animals showed any protection against NMDA-mediated neurotoxicity, indicating that inhibition of this enzyme may not be a viable protective strategy in disorders of the cortex involving over-activation of the NMDA receptor.  相似文献   

6.
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha; type IVA), an essential initiator of stimulus-dependent arachidonic acid (AA) metabolism, underwent caspase-mediated cleavage at Asp(522) during apoptosis. Although the resultant catalytically inactive N-terminal fragment, cPLA(2)(1-522), was inessential for cell growth and the apoptotic process, it was constitutively associated with cellular membranes and attenuated both the A23187-elicited immediate and the interleukin-1-dependent delayed phases of AA release by several phospholipase A(2)s (PLA(2)s) involved in eicosanoid generation, without affecting spontaneous AA release by PLA(2)s implicated in phospholipid remodeling. Confocal microscopic analysis revealed that cPLA(2)(1-522) was distributed in the nucleus. Pharmacological and transfection studies revealed that Ca(2+)-independent PLA(2) (iPLA(2); type VI), a phospholipid remodeling PLA(2), contributes to the cell death-associated increase in fatty acid release. iPLA(2) was cleaved at Asp(183) by caspase-3 to a truncated enzyme lacking most of the first ankyrin repeat, and this cleavage resulted in increased iPLA(2) functions. iPLA(2) had a significant influence on cell growth or death, according to cell type. Collectively, the caspase-truncated form of cPLA(2)alpha behaves like a naturally occurring dominant-negative molecule for stimulus-induced AA release, rendering apoptotic cells no longer able to produce lipid mediators, whereas the caspase-truncated form of iPLA(2) accelerates phospholipid turnover that may lead to apoptotic membranous changes.  相似文献   

7.
Treatment of bovine pulmonary artery endothelial cells with the calcium ionophore, A23187, stimulates the cell membrane associated protease activity, phospholipase A2 (PLA2) activity, and arachidonic acid (AA) release from the cells. Pretreatment of the cells with arachidonyl-trifluomethylketone (AACOCF3), a cPLA2 inhibitor, but not bromoenollactone (BEL), a iPLA2 inhibitor, prevents A23187 stimulated PLA2 activity and AA release without producing an appreciable alteration of the protease activity. Pretreatment of the cells with aprotinin, an ambient protease inhibitor, prevents the increase in the protease activity and cPLA2 activity in the membrane and AA release from the cells caused by both low and high doses of A23187, and also inhibits protein kinase C (PKC) activity caused by high doses of A23187. Immunoblot study of the endothelial cell membrane isolated from A23187 (10 microM)-treated cells with polyclonal PKCalpha antibody elicited an increase in the 80 kDa immunoreactive protein band along with an additional 47 kDa immunoreactive fragment. Pretreatment of the cells with aprotinin abolished the 47 kDa immunoreactive fragment in the immunoblot. Immunoblot study of the endothelial membrane with polyclonal cPLA2 antibody revealed that treatment of the cells with A23187 dose-dependently increases cPLA2 immunoreactive protein profile in the membrane. It therefore appears from the present study that treatment of the cells with a low dose of A23187 (1 microM) causes a small increase in an aprotinin-sensitive protease activity and that stimulates cPLA2 activity in the cell membrane without an involvement of PKC. By contrast, treatment of the cells with a high dose of 10 microM of A23187 causes optimum increase in the protease activity and that plays an important role in activating PKCalpha, which subsequently stimulates cPLA2 activity in the cell membrane. Although pretreatment of the cells with pertussis toxin caused ADP ribosylation of a 41 kDa protein in the cell membrane, it did not inhibit the cPLA2 activity and AA release caused by both low and high doses of A23187.  相似文献   

8.
Both glutathione (GSH) depletion and arachidonic acid (AA) generation have been shown to regulate sphingomyelin (SM) hydrolysis and are known components in tumor necrosis factor alpha (TNFalpha)-induced cell death. In addition, both have hypothesized direct roles in activation of N-sphingomyelinase (SMase); however, it is not known whether these are independent pathways of N-SMase regulation or linked components of a single ordered pathway. This study was aimed at differentiating these possibilities using L929 cells. Depletion of GSH with L-buthionin-(S,R)-sulfoximine (BSO) induced 50% hydrolysis of SM at 12 h. In addition, TNF induced a depletion of GSH, and exogenous addition of GSH blocked TNF-induced SM hydrolysis as well as TNF-induced cell death. Together, these results establish GSH upstream of SM hydrolysis and ceramide generation in L929 cells. We next analyzed the L929 variant, C12, which lacks both cytosolic phospholipase A(2) (cPLA(2)) mRNA and protein, in order to determine the relationship of cPLA(2) and GSH. TNF did not induce a significant drop in GSH levels in the C12 line. On the other hand, AA alone was capable of inducing a 60% depletion of GSH in C12 cells, suggesting that these cells remain responsive to AA distal to the site of cPLA(2). Furthermore, depleting GSH with BSO failed to effect AA release, but caused a drop in SM levels, showing that the defect in these cells was upstream of the GSH drop and SMase activation. When cPLA(2) was restored to the C12 line by expression of the cDNA, the resulting CPL4 cells regained sensitivity to TNF. Treatment of the CPL4 cells with TNF resulted in GSH levels dropping to levels near those of the wild-type L929 cells. These results demonstrate that GSH depletion following TNF treatment in L929 cells is dependent on intact cPLA(2) activity, and suggest a pathway in which activation of cPLA(2) is required for the oxidation and reduction of GSH levels followed by activation of SMases.  相似文献   

9.
The cellular resistance to tumor necrosis factor (TNF) of most cell types has been attributed to both a protective pathway induced by this cytokine and the preexistence of protective factors in the target cell. NF-kappaB has been postulated as one of the principal factors involved in antiapoptotic gene expression control on TNF-resistant cells. We have previously shown that glucocorticoids protect the naturally TNF-sensitive L-929 cells from apoptosis. Here we analyze the role of NF-kappaB and glucocorticoids on TNF-induced apoptosis in L-929 cells. We found that inhibition of NF-kappaB enhanced the sensitivity to TNF-induced apoptosis. Glucocorticoids inhibited NF-kappaB transactivation via IkappaB induction. Moreover, glucocorticoids protected from TNF-induced apoptosis even when NF-kappaB activity was inhibited by stable or transient expression of the superrepressor IkappaB. These results demonstrate that although glucocorticoids inhibit NF-kappaB transactivation in these cells, this is not required for their protection from TNF-induced apoptosis.  相似文献   

10.
CHO transfectants expressing the three subtypes of rat alpha2 adrenergic receptors (alpha2AR): alpha2D, alpha2B, alpha2C were studied to compare the transduction pathways leading to the receptor-mediated stimulation of phospholipase A2 (PLA2) in the corresponding cell lines CHO-2D, CHO-2B, CHO-2C. The alpha2B subtype stimulated the arachidonic acid (AA) release after incubation of the cells with 1 microM epinephrine, whereas alpha2D and alpha2C gave no stimulation. Calcium ionophore A23187 (1 microM) increased the release by a factor of 2-4 in the three strains. When cells were incubated with both epinephrine and Ca2+ ionophore, the AA release differed greatly between cell lines with strong potentiation in CHO-2B (2-3 times greater than Ca2+ ionophore alone), moderate potentiation in CHO-2D, and no potentiation in CHO-2C. The three cell lines each inhibited adenylylcyclase with similar efficiencies when 1 microM epinephrine was used as the agonist. The potentiation depended on both alpha2AR and Gi proteins since yohimbine and pertussis toxin inhibited the process. Pretreatment of CHO-2B cells with MAFP which inhibits both cytosolic and Ca2+-independent PLA2, reduced the release of AA induced by epinephrine+Ca2+ ionophore to basal value, whereas bromoenol lactone, a specific Ca2+-independent PLA2 inhibitor, had no effect. Preincubation of the cells with the intracellular calcium chelator BAPTA gave a dose-dependent inhibition of the arachidonic acid (AA) release. In CHO cells expressing the angiotensin II type 1 receptor, coupled to a Gq protein, the agonist (10-7 M) produced maximal AA release: there was no extra increase when angiotensin and Ca2+ ionophore were added together. There was no increase in the amount of inositol 1,4, 5-triphosphate following stimulation of CHO-2B, -2C, -2D cells with 1 microM epinephrine. Epinephrine led to greater phosphorylation of cPLA2, resulting in an electrophoretic mobility shift for all three cell lines, so inadequate p42/44 MAPKs stimulation was not responsible for the weaker stimulation of cPLA2 in CHO-2C cells. Therefore, the stimulation of cPLA2 by Gi proteins presumably involves another unknown mechanism. The differential stimulation of cPLA2 in these transfectants will be of value to study the actual involvement of the transduction pathways leading to maximal cPLA2 stimulation.  相似文献   

11.
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were exposed to increasing Fe(2+) concentrations (25, 200 or 800μM) or to the vehicle, and lipid peroxidation levels, mitochondrial function, and the activities of cytosolic PLA(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) were studied. Incubation with Fe(2+) led to a time- and concentration-dependent increase in retinal lipid peroxidation levels whereas retinal cell viability was only affected after 60min of oxidative injury. A differential release of arachidonic acid (AA) and palmitic acid (PAL) catalyzed by cPLA(2) and iPLA(2) activities, respectively, was also observed in microsomal and cytosolic fractions obtained from retinas incubated with iron. AA release diminished as the association of cyclooxigenase-2 increased in microsomes from retinas exposed to iron. Retinal lipid peroxidation and cell viability were also analyzed in the presence of cPLA(2) inhibitor, arachidonoyl trifluoromethyl ketone (ATK), and in the presence of iPLA(2) inhibitor, bromoenol lactone (BEL). ATK decreased lipid peroxidation levels and also ERK1/2 activation without affecting cell viability. BEL showed the opposite effect on lipid peroxidation. Our results demonstrate that iPLA(2) and cPLA(2) are differentially regulated and that they selectively participate in retinal signaling in an experimental model resembling AMD.  相似文献   

12.
Phospholipase A2 (PLA(2)) has been implicated in neurodevelopmental processes and in the early development of the nervous system. We investigated the effects of the inhibition of calcium-dependent and calcium-independent subtypes of cytosolic PLA2 (cPLA2 and iPLA2) on the development and viability of primary cultures of cortical and hippocampal neurons. PLA2 in these cultures was continuously inhibited with methylarachidonyl-fluorophosphonate (MAFP), an irreversible inhibitor of cPLA2 and iPLA2, or with bromoenol lactone (BEL), an irreversible selective iPLA2 inhibitor. The effect of PLA2 inhibitors on the development of neuronal cultures was ascertained by total cell count and morphological characterisation. Neuronal viability was quantified with MTT assays. Inhibition of PLA2 resulted in reduction of neuritogenesis and neuronal viability, disrupting neuronal homeostasis and leading to neuronal death. We conclude that the functional integrity of both calcium-dependent and calcium-independent cytosolic PLA2 is necessary for the in vitro development of cortical and hippocampal neurons.  相似文献   

13.
Mast cells release a variety of mediators, including arachidonic acid (AA) metabolites, to regulate allergy, inflammation, and host defense, and their differentiation and maturation within extravascular microenvironments depend on the stromal cytokine stem cell factor. Mouse mast cells express two major intracellular phospholipases A(2) (PLA(2)s), namely group IVA cytosolic PLA(2) (cPLA(2)α) and group VIA Ca(2+)-independent PLA(2) (iPLA(2)β), and the role of cPLA(2)α in eicosanoid synthesis by mast cells has been well documented. Lipidomic analyses of mouse bone marrow-derived mast cells (BMMCs) lacking cPLA(2)α (Pla2g4a(-/-)) or iPLA(2)β (Pla2g6(-/-)) revealed that phospholipids with AA were selectively hydrolyzed by cPLA(2)α, not by iPLA(2)β, during FcεRI-mediated activation and even during fibroblast-dependent maturation. Neither FcεRI-dependent effector functions nor maturation-driven phospholipid remodeling was impaired in Pla2g6(-/-) BMMCs. Although BMMCs did not produce prostaglandin E(2) (PGE(2)), the AA released by cPLA(2)α from BMMCs during maturation was converted to PGE(2) by microsomal PGE synthase-1 (mPGES-1) in cocultured fibroblasts, and accordingly, Pla2g4a(-/-) BMMCs promoted microenvironmental PGE(2) synthesis less efficiently than wild-type BMMCs both in vitro and in vivo. Mice deficient in mPGES-1 (Ptges(-/-)) had an augmented local anaphylactic response. These results suggest that cPLA(2)α in mast cells is functionally coupled, through the AA transfer mechanism, with stromal mPGES-1 to provide anti-anaphylactic PGE(2). Although iPLA(2)β is partially responsible for PGE(2) production by macrophages and dendritic cells, it is dispensable for mast cell maturation and function.  相似文献   

14.
Herein we demonstrate that IFN-alpha, IFN-gamma, and IL-2 can induce human peripheral blood monocyte-mediated lysis of tumor cells that are resistant to both the direct effects of TNF and to monocytes activated by TNF. Monocytes activated by TNF kill only TNF-sensitive tumor targets, whereas those activated by IFN and IL-2 can lyse both TNF-sensitive and TNF-resistant tumor targets. Monocyte cytotoxicity against TNF-sensitive lines induced by the IFN, IL-2, or TNF can be completely abrogated by the addition of anti-TNF antibodies. In contrast, anti-TNF antibodies have no effect on IFN- or IL-2-induced monocyte cytotoxicity against TNF resistant targets, confirming non-TNF-mediated lysis induced by lymphokine-activated monocytes. Neither induction of TNF receptors by IFN-gamma nor inhibition of RNA synthesis by actinomycin D increased the susceptibility of TNF-resistant tumor targets to TNF-mediated monocyte cytotoxicity. Thus, non-TNF-mediated modes of monocyte cytotoxicity are induced by IFN and IL-2, but not by TNF, indicating that different cytotoxic mechanisms are responsible for the lysis of TNF-sensitive and TNF-resistant tumor cells. In addition, these findings also suggest that TNF-sensitive lines are susceptible only to TNF-mediated killing and apparently insensitive to non-TNF-mediated monocyte cytotoxicity.  相似文献   

15.
16.
T Kambe  M Murakami  I Kudo 《FEBS letters》1999,453(1-2):81-84
By analyzing human embryonic kidney 293 cell transfectants stably overexpressing various types of phospholipase A2 (PLA2), we have shown that polyunsaturated fatty acids (PUFAs) preferentially activate type IIA secretory PLA2 (sPLA2-IIA)-mediated arachidonic acid (AA) release from interleukin-1 (IL-1)-stimulated cells. When 293 cells prelabeled with 13H]AA were incubated with exogenous PUFAs in the presence of IL-1 and serum, there was a significant increase in [3H]AA release (in the order AA > linoleic acid > oleic acid), which was augmented markedly by sPLA2-IIA and modestly by type IV cytosolic PLA2 (cPLA2), but only minimally by type VI Ca2(+)-independent PLA2, overexpression. Transfection of cPLA2 into sPLA2-IIA-expressing cells produced a synergistic increase in IL-1-dependent [3H]AA release and subsequent prostaglandin production. Our results support the proposal that prior production of AA by cPLA2 in cytokine-stimulated cells destabilizes the cellular membranes, thereby rendering them more susceptible to subsequent hydrolysis by sPLA2-IIA.  相似文献   

17.
Sjursen W  Brekke OL  Johansen B 《Cytokine》2000,12(8):1189-1194
The involvement of cytosolic phospholipase A(2)(cPLA(2)) and secretory non-pancreatic PLA(2)(npPLA(2)) in release of arachidonic acid (AA) preceding eicosanoid formation in the human keratinocyte cell line HaCaT was examined. Interleukin 1beta (IL-1beta) and tumour necrosis factor-alpha (TNF), phorbol myristate acetate (PMA) and calcium ionophore A(23187)increased the extracellular AA release, and stimulated eicosanoid synthesis as determined by HPLC analysis. The main metabolites after stimulation with IL-1beta, PMA or A(23187)were PGE(2), an unidentified PG and LTB(4), while TNF stimulated HETE-production. Both cPLA(2)and npPLA(2)message and enzyme activity were detected in unstimulated HaCaT cells. IL-1beta, PMA and TNF increased both cPLA(2)enzyme activity and expression, but did not lead to any increase in npPLA(2)expression or activity. The selective npPLA(2)inhibitors LY311727 and 12-epi-scalaradial, or the cPLA(2)inhibitor arachidonyl trifluoro methyl ketone (AACOCF(3)) reduced IL-1beta-induced eicosanoid production in a concentration dependent manner. The results presented strongly suggest that both cPLA(2)and npPLA(2)contribute to the long-term generation of AA preceding eicosanoid production in differentiated, human keratinocytes. Inhibitors against npPLA2 or cPLA2 enzymes should be useful in treating inflammatory skin diseases, such as psoriasis.  相似文献   

18.
The purpose of this study was to define the role of secretory phospholipase A2 (sPLA2), calcium-independent PLA2, and cytosolic PLA2 (cPLA2) in arachidonic acid (AA) release from fMLP-stimulated human neutrophils. While fMLP induced the release of extracellular sPLA2 activity and AA, 70% of sPLA2 activity remained associated with the cell. Treatment with the cell-impermeable sPLA2 inhibitors DTT or LY311-727, or the anti-sPLA2 Ab 3F10 all inactivated extracellular sPLA2 activity, but had minimal effect on neutrophil AA mass release. In contrast, coincubation of streptolysin-O toxin-permeabilized neutrophils with DTT, LY311-727, or 3F10 all decreased [3H8]AA release from [3H8]AA-labeled, fMLP-stimulated cells. Exposure to fMLP resulted in a decrease in the electrophoretic mobility of cPLA2, a finding consistent with cPLA2 phosphorylation, and stimulated the translocation of cPLA2 from cytosolic to microsomal and nuclear compartments. The role of cPLA2 was further evaluated with the cPLA2 inhibitor methyl arachidonyl fluorophosphonate, which attenuated cPLA2 activity in vitro and decreased fMLP-stimulated AA mass release by intact neutrophils, but had no effect on neutrophil sPLA2 activity. Inhibition of calcium-independent PLA2 with haloenol lactone suicide substrate had no effect on neutrophil cPLA2 activity or AA mass release. These results indicate a role for cPLA2 and an intracellular or cell-associated sPLA2 in the release of AA from fMLP-stimulated human neutrophils.  相似文献   

19.
20.
The current study examined the signal transduction steps involved in the selective release of arachidonic acid (AA) induced by the addition of secretory phospholipase A2 (sPLA2) isotypes to bone marrow-derived mast cells (BMMC). Overexpression of sPLA2 receptors caused a marked increase in AA and PGD2 release after stimulation of BMMC, implicating sPLA2 receptors in this process. The hypothesis that the release of AA by sPLA2 involved activation of cytosolic PLA2 (cPLA2) was next tested. Addition of group IB PLA2 to BMMC caused a transient increase in cPLA2 activity and translocation of this activity to membrane fractions. Western analyses revealed that these changes in cPLA2 were accompanied by a time-dependent gel shift of cPLA2 induced by phosphorylation of cPLA2 at various sites. A noncatalytic ligand of the sPLA2 receptor, p-amino-phenyl-alpha-D-mannopyranoside BSA, also induced an increase in cPLA2 activity in BMMC. sPLA2 receptor ligands induced the phosphorylation of p44/p42 mitogen-activated protein kinase. Additionally, an inhibitor of p44/p42 mitogen-activated protein kinase (PD98059) significantly inhibited sPLA2-induced cPLA2 activation and AA release. sPLA2 receptor ligands also increased Ras activation while an inhibitor of tyrosine phosphorylation (herbimycin) inhibited the increase in cPLA2 activation and AA release. Addition of partially purified sPLA2 from BMMC enhanced cPLA2 activity and AA release. Similarly, overexpression of mouse groups IIA or V PLA2 in BMMC induced an increase in AA release. These data suggest that sPLA2 mediate the selective release of AA by binding to cell surface receptors and then inducing signal transduction events that lead to cPLA2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号