首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation and expression of cDNA encoding the murine homologues of CD1.   总被引:5,自引:0,他引:5  
The cDNA encoding the murine CD1.1 and CD1.2 gene products were isolated and their complete nucleotide sequence was determined. The nucleotide sequence and genomic organization of these molecules were similar to human CD1. The sequences in the alpha 1- alpha 3 domains were almost identical to previously reported genomic clones from a different strain, indicating limited polymorphism among these molecules. The predicted amino acid sequence in the transmembrane region and in the cytoplasmic tail was identical for CD1.1 and CD1.2. The two cDNA were also homologous in the 5' untranslated region but diverged in the 3' untranslated region. In contrast to human CD1, which is expressed at high levels in thymus, the expression of CD1 message in murine thymus was not detected in either thymus leukemia Ag positive or negative strains. Cell expressing murine CD1.1 were generated after transfer of the CD1.1 cDNA into murine cell lines. Immunoprecipitation with a rat anti-mouse CD1.1 mAb showed that the transfected CD1 was expressed on the cell surface as a beta 2-microglobulin-linked heterodimer. These results demonstrate that the murine and human CD1 genes, although encoding homologous transmembrane glycoproteins, are expressed in distinct tissues and may serve different functions.  相似文献   

2.
CD1 antigens are cell-surface glycoproteins which have a molecular structure which is similar (consisting of extracellular domains alpha 1, alpha 2, and alpha 3, a transmembrane portion, and a cytoplasmic tail) to that of class I MHC molecules. Phylogenetic analysis of mammalian CD1 DNA sequences revealed that these genes are more closely related to the class I major histocompatibility complex (MHC) than to the class II MHC and that mammalian genes are more closely related to avian class I MHC genes than they are to mammalian class I MHC genes. The CD1 genes form a multigene family with different numbers of genes in different species (five in human, eight in rabbit, and two in mouse). Known CD1 genes are grouped into the following three families, on the basis of evolutionary relationship: (1) the human HCD1B gene and a partial sequence from the domestic rabbit, (2) the human HCD1A and HCD1C genes, and (3) the human HCD1D and HCD1E genes plus the two mouse genes and a sequence from the cottontail rabbit. The alpha 1 and alpha 2 domains of CD1 are much less conserved at the amino acid level than are the corresponding domains of class I MHC molecules, but the alpha 3 domain of CD1 seems to be still more conserved than the well-conserved alpha 3 domain of class I MHC molecules. Furthermore, in the human CD1 gene family, interlocus exon exchange has homogenized alpha 3 domains of all CD1 genes except HCD1C.  相似文献   

3.
Activation of human T4 cells by cross-linking class I MHC molecules   总被引:2,自引:0,他引:2  
These studies examined whether cross-linking class I MHC molecules results in functional or biochemical responses in human T4 cells. The initial studies demonstrated that cross-linking class I MHC molecules either by culturing highly purified T4 cells with immobilized mAb to class I MHC Ag or reacting the T4 cells with mAb to class I MHC Ag and then cross-linking the mAb with goat antimouse Ig (GaMIg) enhanced T4 cell proliferation induced by an immobilized mAb to CD3, OKT3. More-over, immobilized but not soluble mAb to class I MHC Ag enhanced T4 cell proliferation induced by the combination of two mAb to CD2, OKT11, and D66.2. Finally, T4 cells reacted with mAb to CD3 and class I MHC Ag proliferated in the presence of IL-2 when cross-linked with GaMIg more vigorously than T4 cells reacted with either mAb alone. Cross-linking class I MHC molecules was also found to stimulate T4 cells directly. T4 cells reacted with mAb to class I MHC Ag or beta 2 microglobulin and cross-linked with GaMIg proliferated vigorously in the presence of IL-2 or PMA. In addition, it was demonstrated that cross-linking class I MHC molecules by culturing T4 cells with immobilized mAb to class I MHC Ag induced T4 cell proliferation in the presence of IL-2. T4 cell proliferation in the presence of IL-2 and PMA could also be induced by reacting the cells with specific mAb to polymorphic determinants on class I MHC molecules and cross-linking with GaMIg. Cross-linking mAb to CD4 or CD11a did not have a similar functional effect on T4 cells. Finally it was demonstrated that adding GaMIg to T4 cells reacted with mAb to class I MHC Ag but not CD11a resulted in an increase in intracellular calcium concentration. The data demonstrate that cross-linking class I MHC molecules results in the generation of at least one activation signal, a rise in intracellular calcium concentration, and, thereby, stimulates human T4 cells.  相似文献   

4.
5.
We analyzed the phosphorylation and the dynamics of TCR/CD3, CD8 and MHC class I molecules during the activation of a CD8+ cytotoxic T lymphocyte clone and of CD8- T helper hybridomas transfected with the gene coding for the native (J. Gabert, C. Langlet, R. Zamoyska, J.R. Parnes, A.M. Schmitt-Verhulst, and B. Malissen. 1987. Reconstitution of MHC class I specificity by transfer of the T cell receptor and Lyt-2 genes. Cell 50:545) or truncated CD8 alpha molecule. The CD3 components gamma and epsilon and the CD8 alpha subunit were phosphorylated after activation of the CTL clone with the protein kinase C activator PMA. Class I MHC molecules were phosphorylated irrespective of PMA activation. Constitutive phosphorylation of the MHC class I products was found to be intrinsic to the transmembrane/cytoplasmic portion of the molecules because it was transferred to the CD8 alpha hybrid molecules composed of extracellular CD8 and MHC class I transmembrane and intracytoplasmic domains (CD8-e/MHC-t-i). Measurements of the dynamics of these cell surface molecules by using radiolabeled mAb revealed distinct behaviors: TCR/CD3 complex ligand internalization was increased (around 50% after 40 to 60 min) after PMA activation, whereas the ligand of class I MHC molecules was internalized at constant rate irrespective of PMA activation. Ligand bound to native CD8 molecules was poorly internalized, irrespective of the activation of the T cells with PMA. The same ligand bound to the CD8-e/MHC-t-i hybrid molecule was internalized at the same rate as a class I MHC molecule ligand, indicating that the behavior of the hybrid molecule was characteristic of the transmembrane/cytoplasmic portion of MHC class I molecules.  相似文献   

6.
It is known that the alpha-chain of CD8 binds to a negatively charged loop composed of residues 223 to 229 on MHC class I Ag and that binding of CD8 alpha enhances Ag recognition of T cells. We have recently shown that the mouse CD8 alpha homodimer does not bind to either the HLA class I alpha 3 domain or a mutant of H-2Kb Ag containing a substitution of glutamine for methionine at residue 224, which brings this residue toward the human consensus. Here we report a complementary study of the CD8 beta-chain. The functional role of the CD8 beta-chain was analyzed by using four T cell hybridoma lines expressing mouse CD8 alpha and transfected with the mouse CD8 beta gene. As compared with the lines expressing only CD8 alpha, allorecognition of the chimeric H-2Kb Ag that contains the HLA class I alpha 3 domain was enhanced in lines expressing both CD8 alpha and -beta. This enhancement was blocked by either anti-CD8 mAb or anti-HLA class I alpha 3 domain mAb. In addition, we show that CD8 alpha beta binds the H-2Kb mutant Ag at residue 224. These results suggest that the beta-chain allows the CD8 alpha beta heterodimer to recognize the chimeric H-2Kb Ag. A model for the role of the beta-chain is presented.  相似文献   

7.
We have evaluated the relative contributions of the extracellular and cytoplasmic domains of MHC class II molecules in determining the Ag-processing requirements for class II-restricted Ag presentation to T cells. Hybrid genes were constructed to encode a heterodimeric I-Ak molecule in which the extracellular portion of the molecule resembled wild type I-Ak but where the connecting stalk, transmembrane and cytoplasmic domains of both the alpha- and beta-chain were derived from the class I molecule H-2Dd. Mutant I-Ak molecules were expressed as heterodimeric membrane glycoproteins reactive with mAb specific for wild type I-Ak. Fibroblast and B lymphoma cells expressing either wild type or mutant I-Ak molecules were able to process and present hen egg lysozyme (HEL) and conalbumin to Ag-specific, I-Ak-restricted, T cell hybridomas or clones. The mutant-expressing cells presented native and peptide Ag less efficiently than the wild type-expressing cells, suggesting that the disparity in presentation efficiency was not due to a difference in Ag processing. CD4 interaction was intact on the mutant I-Ak molecules. Presentation of native Ag by mutant and wild type-I-Ak-expressing cells was abolished by preincubation with chloroquine, or after paraformaldehyde fixation. After transfection of a cDNA encoding the gene for HEL, neither mutant nor wild type-I-Ak-expressing cells presented endogenously synthesized HEL to a specific T hybrid. Newly synthesized mutant I-Ak molecules were associated with invariant chain. These data demonstrate the ability of hybrid class II molecules to associate intracellularly with invariant chain and degraded foreign Ag in a conventional class II-restricted processing pathway indicating that the extracellular domains of class II molecules play a dominant role in controlling these Ag-processing requirements.  相似文献   

8.
Vaccinia virus (VV), currently used in humans as a live vaccine for smallpox, can interfere with host immunity via several discrete mechanisms. In this study, the effect of VV on MHC class II-mediated Ag presentation was investigated. Following VV infection, the ability of professional and nonprofessional APC to present Ag and peptides to CD4+ T cells was impaired. Viral inhibition of class II Ag presentation could be detected within 1 h, with diminished T cell responses dependent upon the duration of APC infection and virus titer. Exposure of APC to replication-deficient virus also diminished class II Ag presentation. Virus infection of APC perturbed Ag presentation by newly synthesized and recycling class II molecules, with disruptions in both exogenous and cytoplasmic Ag presentation. Virus-driven expression of an endogenous Ag, failed to restore T cell responsiveness specific for this Ag in the context of MHC class II molecules. Yet, both class II protein steady-state and cell surface expression were not altered by VV. Biochemical and functional analysis revealed that VV infection directly interfered with ligand binding to class II molecules. Together, these observations suggest that disruption of MHC class II-mediated Ag presentation may be one of multiple strategies VV has evolved to escape host immune surveillance.  相似文献   

9.
10.
Activated human T cells express MHC class II and have been shown to present foreign Ag to autologous T cells. We now demonstrate that MHC class II+ T cell clones can present myelin basic protein (MBP) peptide autoantigen in the absence of traditional APC to autologous MBP reactive T cell clones. MBP peptide-pulsed T cell clones specifically stimulated autologous MBP-reactive T cell clones to flux calcium and proliferate. Activation responses were peptide epitope specific and blocked by mAb to MHC class II, indicating a TCR-mediated response. In addition, mAb to the adhesion molecules LFA-3, CD2, LFA-1, CD29, and to the tyrosine phosphatase CD45 also inhibited proliferation, indicating the involvement of T to T cell interactions. In contrast to peptide Ag, T cell clones did not respond to autologous T cells pulsed with HPLC-purified MBP, suggesting that T cells are unable to process whole MBP. However, batch-purified MBP Ag preparations containing lower m.w. breakdown products were presented by T cells, indicating that naturally occurring breakdown products of autoantigens could be presented by activated T cells in vivo. These results raise the possibility that T cell presentation of autoantigen at inflammatory sites may be important in regulation of immune responses to self Ag.  相似文献   

11.
Upon exposure to Ag and inflammatory stimuli, dendritic cells (DCs) undergo a series of dynamic cellular events, referred to as DC maturation, that involve facilitated peptide Ag loading onto MHC class II molecules and their subsequent transport to the cell surface. Besides MHC molecules, human DCs prominently express molecules of the CD1 family (CD1a, -b, -c, and -d) and mediate CD1-dependent presentation of lipid and glycolipid Ags to T cells, but the impact of DC maturation upon CD1 trafficking and Ag presentation is unknown. Using monocyte-derived immature DCs and those stimulated with TNF-alpha for maturation, we observed that none of the CD1 isoforms underwent changes in intracellular trafficking that mimicked MHC class II molecules during DC maturation. In contrast to the striking increase in surface expression of MHC class II on mature DCs, the surface expression of CD1 molecules was either increased only slightly (for CD1b and CD1c) or decreased (for CD1a). In addition, unlike MHC class II, DC maturation-associated transport from lysosomes to the plasma membrane was not readily detected for CD1b despite the fact that both molecules were prominently expressed in the same MIIC lysosomal compartments before maturation. Consistent with this, DCs efficiently presented CD1b-restricted lipid Ags to specific T cells similarly in immature and mature DCs. Thus, DC maturation-independent pathways for lipid Ag presentation by CD1 may play a crucial role in host defense, even before DCs are able to induce maximum activation of peptide Ag-specific T cells.  相似文献   

12.
We have investigated the role of CD2 molecules in Ag-specific T cell activation by using a mouse model system in which the function of CD2 can be analyzed without the apparent influence of major accessory molecules, such as CD4 or LFA-1. Transfection of the CD2 gene into a CD2- T cell hybridoma confers the enhancement of IL-2 production upon Ag stimulation. Anti-CD2 mAb inhibits the Ag-specific response of the CD2-transfectant, not only to the level of CD2- cells but to the background. B cells, but not MHC class II-transfected L cells, serve as APC to induce the inhibition of Ag response. The complete abrogation of the response is observed only upon the stimulation through TCR with Ag in the presence of APC but not through either TCR-CD3 or other molecules such as Thy-1. Furthermore, the inhibition can also be observed when anti-CD2 mAb is immobilized on culture plates, suggesting that the inhibition of Ag response results from transducing the negative signal through the CD2 molecule. The experiments on cytoplasmic domain-deleted CD2-transfected T cells reveal that the cytoplasmic portion is responsible for the CD2-mediated abrogation of Ag responses. These results imply that CD2 has important roles in T cell responses not only as an activation and adhesion molecule but also as a regulatory molecule of Ag-specific responses through the TCR.  相似文献   

13.
J Olsen  H Sj?str?m  O Norén 《FEBS letters》1989,251(1-2):275-281
We have isolated four lambda-phages covering the complete pig aminopeptidase N/CD13 gene. The sequence of 2.85 kbp encompasses 1.18 kbp of the 5' upstream region and 1.67 kbp of the structural gene. In the promoter region we find a TATA box and potential binding sites for CTF-1/NF-1 and AP-2. By sequence comparisons we have found three domains showing similarity to promoter regions of the genes encoding human alpha 1-antitrypsin and human intestinal alkaline phosphatase. The gene sequence includes the first three exons and two introns. It shows that a single exon encodes the cytoplasmic tail, the membrane anchor and the junctional peptide.  相似文献   

14.
Exogenous Ags taken up from the fluid phase can be presented by both newly synthesized and recycling MHC class II molecules. However, the presentation of Ags internalized through the B cell receptor (BCR) has not been characterized with respect to whether the class II molecules with which they become associated are newly synthesized or recycling. We show that the presentation of Ag taken up by the BCR requires protein synthesis in splenic B cells and in B lymphoma cells. Using B cells transfected with full-length I-Ak molecules or molecules truncated in cytoplasmic domains of their alpha- or beta-chains, we further show that when an Ag is internalized by the BCR, the cytoplasmic tails of class II molecules differentially control the presentation of antigenic peptides to specific T cells depending upon the importance of proteolytic processing in the production of that peptide. Integrity of the cytoplasmic tail of the I-Ak beta-chain is required for the presentation of the hen egg lysozyme determinant (46-61) following BCR internalization, but that dependence is not seen for the (34-45) determinant derived from the same protein. The tail of the beta-chain is also of importance for the dissociation of invariant chain fragments from class II molecules. Our results demonstrate that Ags internalized through the BCR are targeted to compartments containing newly synthesized class II molecules and that the tails of class II beta-chains control the loading of determinants produced after extensive Ag processing.  相似文献   

15.
The human immunodeficiency virus type 1 (HIV-1) Vpu accessory protein is a transmembrane protein that down regulates CD4 expression and promotes the release of new virions. We screened a human leukocyte-specific yeast two-hybrid expression library to discover novel Vpu-interacting cellular proteins. The major histocompatibility complex class II (MHC II) invariant chain, also called Ii or CD74, was found to be one such protein. We show direct binding of Vpu and CD74 by using a yeast two-hybrid assay and coimmunoprecipitation from HIV-1-infected cells. The cytoplasmic region of Vpu was found to interact with the 30-amino-acid cytoplasmic tail of CD74. Human monocytic U937 cells infected with wild-type or Vpu-defective HIV-1 and transfected cells showed that Vpu down modulated the surface expression of mature MHC II molecules. The reduction in cell surface mature MHC II molecules correlated with decreased antigen presentation to T cells in culture. Thus, the Vpu protein also contributes to viral persistence by attenuating immune responses during HIV infection. This report further exemplifies the rich diversity and redundancy shown by HIV in immune evasion.  相似文献   

16.
CD1d is an MHC class I-like molecule that presents glycolipid Ags to types I and II NKT cells. The YxxI motif in the cytoplasmic tail of CD1d contributes to its intracellular localization to the endolysosomal compartment and is important for Ag presentation to type I NKT cells. In this study, we identified the (327-329)RRR motif in CD1d and showed that it is critical for the control of CD1d intracellular trafficking and Ag presentation. The replacement of the arginines in this motif with alanines resulted in the extensive accumulation of CD1d in lysosomes but did not affect the cell surface expression. The defect in its cellular localization was accompanied by defects in Ag presentation to both type I and type II NKT cells. These results demonstrated that the (327-329)RRR motif of CD1d is required for proper cellular distribution of CD1d and optimal Ag presentation to both type I and type II NKT cells.  相似文献   

17.
An ideal vaccine for induction of CD4(+) T cell responses should induce local inflammation, maturation of APC, and peptide loading of MHC class II molecules. Ligation of Toll-like receptor (TLR) 2 provides the first two of these three criteria. We have studied whether targeting of TLR2 results in loading of MHC class II molecules and enhancement of CD4(+) T cell responses. To dissociate MHC class II presentation from APC maturation, we have used an antagonistic, mouse anti-human TLR2 mAb (TL2.1) as ligand and measured proliferation of a mouse Ckappa-specific human CD4(+) T cell clone. TL2.1 mAb was 100-1000 times more efficiently presented by APC compared with isotype-matched control mAb. Moreover, TL2.1 mAb was internalized into endosomes and processed by the conventional MHC class II pathway. This novel function of TLR2 represents a link between innate and adaptive immunity and indicates that TLR2 could be a promising target for vaccines.  相似文献   

18.
An in vitro assay was used for assessing the participation of various cell surface molecules and the efficacy of various cell types in the deletion of Ag-specific immature thymocytes. Thymocytes from mice expressing a transgenic TCR specific for the male Ag presented by the H-2Db class I MHC molecule were used as a target for deletion. In H-2d transgenic mice, cells bearing the transgenic TCR are not subjected to thymic selection as a consequence of the absence of the restricting H-2Db molecule but, nevertheless, express this TCR on the vast majority of immature CD4+8+ thymocytes. In this report we show that CD4+8+ thymocytes from H-2d TCR-transgenic mice are preferentially killed upon in vitro culture with male APC; DC were particularly effective in mediating in vitro deletion when compared with either B cells or T cells. Deletion of CD4+8+ thymocytes by DC was H-2b restricted and could be inhibited by mAb to either LFA-1 alpha or CD8. Partial inhibition was observed with mAb to ICAM-1, whereas mAb to CD4 and LFA-1 beta were without effect. These results are the first direct evidence of LFA-1 involvement in negative selection and provide further direct support for the participation of CD8/class I MHC interactions in this process. Like the requirements for deletion, activation of mature male-specific CD4-8+ T cells from female H-2b TCR-transgenic mice was also largely dependent on Ag presentation by DC and required both LFA-1/ICAM and CD8/class I MHC interactions; these results support the view that activation and deletion may represent maturation stage-dependent consequences of T cells encountering the same APC. Finally, our results also support the hypothesis that negative selection (deletion) does not require previous positive selection because deletion was observed under conditions where positive selection had not occurred.  相似文献   

19.
MHC class II molecules bind antigenic peptides in the late endosomal/lysosomal MHC class II compartments (MIIC) before cell surface presentation. The class II modulatory molecules HLA-DM and HLA-DO mainly localize to the MIICs. Here we show that DM/DO complexes continuously recycle between the plasma membrane and the lysosomal MIICs. Like DMbeta and the class II-associated invariant chain, the DObeta cytoplasmic tail contains potential lysosomal targeting signals. The DObeta signals, however, are not essential for internalization of the DM/DO complex from the plasma membrane or targeting to the MIICs. Instead, the DObeta tail determines the distribution of both DM/DO and class II within the multivesicular MIIC by preferentially localizing them to the limiting membrane and, in lesser amounts, to the internal membranes. This distribution augments the efficiency of class II antigenic peptide loading by affecting the efficacy of lateral interaction between DM/DO and class II molecules. Sorting of DM/DO and class II molecules to specific localizations within the MIIC represents a novel way of regulating MHC class II Ag presentation.  相似文献   

20.
The Q7 alpha 3 domain alters T cell recognition of class I antigens.   总被引:1,自引:0,他引:1  
In this study we have analyzed the role of the alpha 3 domain of class I molecules in T cell recognition. Using the laboratory engineered molecules LLQQ (alpha 1/alpha 2 from Ld, alpha 3, and phosphatidyl inositol (PI) linked C terminus from Q7) and LLQL (alpha 1/alpha 2 from Ld, alpha 3 from Q7, transmembrane (TM) and cytoplasmic domains from Ld) we show that these molecules are not recognized by primary Ld-specific CTL. The cell membrane expression of both Ld and LLQL are upregulated by co-culture with an exogenously supplied murine cytomegalovirus-derived peptide indicating that the Q7 alpha 3 domain does not interfere with binding of Ag to alpha 1/alpha 2. However, only peptide pulsed Ld but not LLQL target cells are recognized by Ld-restricted-peptide specific CTL. In contrast to the above results, LLQL and LLQQ molecules can be recognized by bulk alloreactive anti-Ld CTL and 2/3 of CTL clones derived from in vivo primed mice. The fact that these secondary CTL recognize LLQQ indicates that a PI linkage is permissive for presentation of class I epitopes to alloreactive CTL. These secondary CTL are resistant to blocking at the effector stage by mAb against CD8 and express relatively low levels of membrane CD8 molecules compared to CTL from unprimed mice. Further, culture of unprimed CTL precursors in the presence of CD8 mAb also allows for the generation of CD8-independent CTL that recognize LLQL. Taken together, these data indicate that the alpha 3 domain of Q7 (Qa-2) prevents CD8-dependent CTL from recognizing Ld, regardless of whether the class I molecule is attached to the cell surface by a PI moiety or as a membrane spanning protein domain. We hypothesize that this defect in recognition is most likely due to an inability of CD8 to interact efficiently with the Q7 alpha 3 domain and could account for why Q7 molecules do not serve as restricting elements for virus and minor H-Ag-specific CTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号