首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nothofagus pumilio (Poepp et Endl.) Krasser is the dominant subalpine tree in the southern Andes between 36°S and 55°S. Increment cores from a N. pumilio stand growing near the Ameghino Glacier (50°25S, 73°10W), southern Patagonian Andes, Argentina, contain significant numbers of intra-annual bands (or false rings) which have not been previously described for this species. These samples are used to develop a well-replicated ring-width chronology and a record of intra-annual bands from AD 1760 to 1997. Annual variations in radial growth of N. pumilio at this site are negatively correlated with spring–summer temperatures and positively with spring precipitation. The formation of intra-annual bands appears to be a response to anomalously dry-warm springs followed by wet-warm late summers. Intra-annual bands may occur in up to 95% of the sampled trees in a given year, and the percentage of trees affected was used as an indication of the strength of the forcing event. Narrow rings occurred in the years following intra-annual band formation, reflecting the lagged effect of unfavorable climatic conditions on tree growth during the subsequent growing season. Intra-annual bands occurred more frequently in the twentieth century than the late eighteenth and nineteenth centuries. This contrasting pattern seems to be a response to the combination of a long-term warming trend and a significant decrease in precipitation recorded during the last 100 years in this region of southern South America.
Mariano MasiokasEmail:
  相似文献   

2.
Larch budmoth (LBM, Zeiraphera diniana Gn.) outbreaks cause discernable physical alteration of cell growth in tree rings of host subalpine larch (Larix decidua Mill.) in the European Alps. However, it is not clear if these outbreaks also impact isotopic signatures in tree-ring cellulose, thereby masking climatic signals. We compared LBM outbreak events in stable carbon and oxygen isotope chronologies of larch and their corresponding tree-ring widths from two high-elevation sites (1800–2200 m a.s.l.) in the Swiss Alps for the period AD 1900–2004 against isotope data obtained from non-host spruce (Picea abies). At each site, two age classes of tree individuals (150–250 and 450–550 years old) were sampled. Inclusion of the latter age class enabled one chronology to be extended back to AD 1650, and a comparison with long-term monthly resolved temperature data. Within the constraints of this local study, we found that: (1) isotopic ratios in tree rings of larch provide a strong and consistent climatic signal of temperature; (2) at all sites the isotope signatures were not disturbed by LBM outbreaks, as shown, for example, by exceptionally high significant correlations between non-host spruce and host larch chronologies; (3) below-average July to August temperatures and LBM defoliation events have been coupled for more than three centuries. Dampening of Alps-wide LBM cyclicity since the 1980s and the coincidence of recently absent cool summers in the European Alps reinforce the assumption of a strong coherence between summer temperatures and LBM defoliation events. Our results demonstrate that stable isotopes in tree-ring cellulose of larch are an excellent climate proxy enabling the analysis of climate-driven changes of LBM cycles in the long term.  相似文献   

3.
In this study, we use tree‐ring records to determine the climate factors controlling the growth of Centrolobium microchaete, a high‐value timber species from the tropical dry Chiquitano forest in Bolivia. We present the first tree‐ring chronologies from C. microchaete for Concepción and Santa Mónica, Bolivia. Statistical analyses show that the chronologies are of good quality and have a significant common signal between trees. The growth of C. microchaete is strongly influenced by climatic conditions during late spring–early summer. Abundant precipitations concurrent with below‐average temperatures during this period of the year favor tree growth. Climate variations in late spring–early summer explain >40 percent of the total variance in C. microchaete tree growth during the interval 1943–2005. Minor differences in tree responses to climate recorded between the two stands may reflect differences in the extent of the dry season and in soil water capacity between sites. Although the chronologies cover the past 180 yr, adding samples from older individuals would permit the extension of these records further back in time. The strong climate dependency of tree growth suggests that predicted future climate changes in the region could have a significant influence on C. microchaete tree growth during the 21st century.  相似文献   

4.
Stable isotopes in tree rings have widely been used for palaeoclimate reconstructions since tree rings record climatic information at annual resolution. However, various wood components or different parts of an annual tree-ring may differ in their isotopic compositions. Thus, sample preparation and subsequent laboratory analysis are crucial for the isotopic signal retained in the final tree-ring isotope series used for climate reconstruction and must therefore be considered for the interpretation of isotope–climate relationships. This study focuses on wood of Corsican Pine trees (Pinus nigra ssp. laricio) as this tree species allows to reconstruct the long-term climate evolution in the western Mediterranean. In a pilot study, we concentrated on methodological issues of sample preparation techniques in order to evaluate isotope records measured on pooled whole tree-ring cellulose and whole tree-ring bulk wood samples. We analysed 80-year long carbon and oxygen chronologies of Corsican Pine trees growing near the upper tree line on Corsica. Carbon and oxygen isotope records of whole tree-ring bulk wood and whole tree-ring cellulose from a pooled sample of 5 trees were correlated with the climate parameters monthly precipitation, temperature and the self-calibrating Palmer Drought Severity Index (sc-PDSI). Results show that the offsets in carbon and oxygen isotopes of bulk wood and cellulose are not constant over time. Both isotopes correlate with climate parameters from late winter and summer. The carbon and oxygen isotope ratios of cellulose are more sensitive to climatic variables than those of bulk wood. The results of this study imply that extraction of cellulose is a pre-requisite for the reconstruction of high-resolution climate records from stable isotope series of P. nigra ssp. laricio.  相似文献   

5.
The radial growth of trees In mountainous areas is subject to environmental conditions associated with changes In elevation. To assess the sensitivity of tree-ring growth to climate variation over a wide range of elevations, we compared the chronological characteristics of Sabina przewalskii Kom. and their relationships with climatic variables at the upper and lower treellnes In the Dulan region of the northeastern Qlnghal-Tlbetan Plateau. It was found that the radial growth in this region was controlled primarily by precipitation in late spring and early summer (from May to June). In addition, a higher temperature from April to June could Intensify drought stress and lead to narrow tree rings. The significant similarity In climate-tree growth relationships at both the upper and lower treellnes Indicated that tree rings of S. przewalskU In this region are able to provide common regional climate information. However, the chronologies at the lower forest limits showed a higher standard deviation and more significant correlations with climatic factors, suggesting that the radial growth there was more significantly Influenced by climate variation. The first principal component of the four chronologies showed a common growth response to local climate. The second principal component showed a contrasting growth response between different sampling sites. The third principal component revealed different growth patterns In response to altitudinal variation. Further analysis Indicated that the precipitation In late spring and early summer controlled the growth of S. przewalskii on a regional scale and that other factors, such as mlcroenvlronment at the sampling sites, also affected the strength of the climatic response of tree growth.  相似文献   

6.
Climate increases regional tree-growth variability in Iberian pine forests   总被引:3,自引:0,他引:3  
Tree populations located at the geographical distribution limit of the species may provide valuable information about tree‐growth response to changes on climatic conditions. We established nine Pinus nigra, 12 P. sylvestris and 17 P. uncinata tree‐ring width chronologies along the eastern and northern Iberian Peninsula, where these species are found at the edge of their natural range. Tree‐growth variability was analyzed using principal component analysis (PCA) for the period 1885–1992. Despite the diversity of species, habitats and climatic regimes, a common macroclimatic signal expressed by the first principal component (PC1) was found. Moreover, considering the PC1 scores as a regional chronology, significant relations were established with Spanish meteorological data. The shared variance held by the tree chronologies, the frequency of narrow rings and the interannual growth variability (sensitivity) increased markedly during the studied period. This shows an enhancement of growth synchrony among forests indicating that climate might have become more limiting to growth. Noticeably, an upward abrupt shift in common variability at the end of the first half of the 20th century was detected. On the other hand, moving‐interval response functions showed a change in the growth–climate relationships during the same period. The relationship between growth and late summer/autumn temperatures of the year before growth (August–September, negative correlation, and November, positive correlation) became stronger. Hence, water stress increase during late summer previous to tree growth could be linked to the larger growth synchrony among sites, suggesting that climate was driving the growth pattern changes. This agrees with the upward trend in temperature observed in these months. Moreover, the higher occurrence of extreme years and the sensitivity increase in the second half of the 20th century were in agreement with an increment in precipitation variability during the growing period. Precipitation variability was positively related to tree‐growth variability, but negatively to radial growth. In conclusion, a change in tree‐growth pattern and in the climatic response of the studied forests was detected since the mid‐20th century and linked to an increase in water stress. These temporal trends were in agreement with the observed increase in warmer conditions and in precipitation variability.  相似文献   

7.
Scots pine (Pinus sylvestris) is a very common tree in Polish forests, and therefore was widely used as timber. A relatively large amount of available wood allowed a long-term chronology to be built up and used as a source of information about past climate. The analysis of reconstructed indexed values of mean temperature in 51-year moving intervals allowed the recognition of the coldest periods in the years 1207–1346, 1383–1425, 1455–1482, 1533–1574, 1627–1646, and 1694–1785. The analysis of extreme wide and narrow rings forms a complementary method of examining climatic data within tree rings. The tree ring widths, early wood and late wood widths of 16 samples were assessed during the period 1581–1676. The most apparent effect is noted in the dry summer of 1616. According to previous research and our findings, temperature from February to March seems to be one of the most stable climatic factors which influenced pine growth in Poland. Correlation coefficients in the calibration and validation procedure gave promising results for temperature reconstruction from the pine chronology.  相似文献   

8.
Astolfi  S.  De Biasi  M.G.  Passera  C. 《Photosynthetica》2001,39(2):177-181
The effect of sulphur deprivation and irradiance (180 and 750 µmol m–2 s–1) on plant growth and enzyme activities of carbon, nitrogen, and sulphur metabolism were studied in maize (Zea mays L. Pioneer cv. Latina) plants over a 15-d-period of growth. Increase in irradiance resulted in an enhancement of several enzyme activities and generally accelerated the development of S deficiency. ATP sulphurylase (ATPs; EC 2.7.7.4) and o-acetylserine sulphydrylase (OASs; EC 4.2.99.8) showed a particular and different pattern as both enzymes exhibited maximum activity after 10 d from the beginning of deprivation period. Hence in maize leaves the enzymes of C, N, and S metabolism were differently regulated during the leaf development by irradiance and sulphur starvation.  相似文献   

9.
Dennis Heinemann 《Oecologia》1992,90(1):137-149
Summary Migrant Rufous Hummingbirds (Selasphorus rufus) defend nectar resources at stopover sites while replenishing fat reserves needed for migratory flights. During late summer in the Sandia Mountains, central New Mexico, they defend the wasp- and bee-pollinated Scrophularia montana from other hummingbirds. Both hummingbirds and hymenopterans exploit Scrophularia nectar during the early part of its flowering period. As summer colony growth increases the densities of the eusocial hymenopterans by 100–150%, their exploitation of Scrophularia nectar lowers its mean standing crop in flowers by 200–300%. Sometime during the summer, Rufous Hummingbirds abandon and do not further use this resource for the remaining 3–4 weeks of its flowering period. The abandonment always occurs when the mean standing crop of nectar is approximately 0.2–0.3 L/ flower. This paper describes a model of Rufous Hummingbird energetics, that shows abandonment occurred 1–3 days after they passed the threshold at which the resource could have provided their minimum daily energy requirements. I suggest that constraints imposed by a highly competitive social environment severely reduced the options available to the hummingbirds, and caused them to continue to defend a resource that could no longer meet their energetic requirements.  相似文献   

10.
Basic knowledge of the relationships between tree growth and environmental variables is crucial for understanding forest dynamics and predicting vegetation responses to climate variations. Trees growing in tropical areas with a clear seasonality in rainfall often form annual growth rings. In the understory, however, tree growth is supposed to be mainly affected by interference for access to light and other resources. In the semi-deciduous Mayombe forest of the Democratic Republic of Congo, the evergreen species Aidia ochroleuca, Corynanthe paniculata and Xylopia wilwerthii dominate the understory. We studied their wood to determine whether they form annual growth rings in response to changing climate conditions. Distinct growth rings were proved to be annual and triggered by a common external factor for the three species. Species-specific site chronologies were thus constructed from the cross-dated individual growth-ring series. Correlation analysis with climatic variables revealed that annual radial stem growth is positively related to precipitation during the rainy season but at different months. The growth was found to associate with precipitation during the early rainy season for Aidia but at the end of the rainy season for Corynanthe and Xylopia. Our results suggest that a dendrochronological approach allows the understanding of climate–growth relationships in tropical forests, not only for canopy trees but also for evergreen understory species and thus arguably for the whole tree community. Global climate change influences climatic seasonality in tropical forest areas, which is likely to result in differential responses across species with a possible effect on forest composition over time.  相似文献   

11.
张文涛  江源  王明昌  张凌楠  董满宇 《生态学报》2015,35(19):6481-6488
为研究树木生长对气候变化的响应状况,选取芦芽山阳坡的3个海拔高度建立了华北落叶松(Larix principis-rupprechtii)的树轮宽度年表。年表的统计参数表明,3条年表均为研究气候信息的可靠资料。结果表明,芦芽山阳坡华北落叶松的径向生长和生长与气候的关系均具有海拔差异,中海拔(2440 m)和高海拔(2540 m)的华北落叶松具有相似年际生长变化,而二者均与低海拔(2330 m)华北落叶松的年际生长不同。低海拔华北落叶松的生长与4月平均气温和上一年11月降水量显著负相关,而中海拔和高海拔的生长均与上一年10月平均气温和6月降水量显著负相关。通过年表与气候因子之间的滑动相关分析发现,3个海拔高度华北落叶松生长与气候因子的关系均不稳定,生长与气温条件之间的显著相关关系是随着气温升高而出现的。气温的升高引起了华北落叶松生长与气温因子关系的海拔差异,以及径向生长的海拔差异。这一结果对于气候变化对植被垂直梯度影响的研究具有一定参考价值。  相似文献   

12.
河北坝上樟子松人工林径向生长及其对气候因素的响应   总被引:2,自引:0,他引:2  
利用树木年轮学方法测定了河北坝上地区樟子松逐年树轮宽度和胸高断面积增量,建立了樟子松树轮宽度差值年表并分析其对气候因素的响应以及生态弹性,为河北坝上地区利用樟子松开展退化杨树防护林更新建设的适宜性提供理论参考。研究结果表明,河北坝上地区樟子松树龄在28 a左右,其生长阶段可划分为快速生长期(0—10 a),生长下降期(11—20 a)和生长平稳期(21—28 a);樟子松树轮宽度在1992—2000年期间为快速增长期((4.49±1.15)mm/a),在2001—2010年期间呈现下降趋势((3.62±1.39)mm/a),而在2011—2019年期间樟子松生长呈平稳特征((2.21±0.68)mm/a),约为快速增长期增长速度的一半;樟子松BAI在1992—2000年间一直呈上升趋势((5.09±2.26)cm~2/a),2001—2019年期间呈平稳特征((10.46±0.67)cm~2/a),表现出稳定且持续的生长能力。樟子松差值年表与气候因素的相关性显示:樟子松径向生长主要与上一年生长季末期(9、10月)、休眠期(12月)及当年生长季(7月)平均温度和最高温度呈显著负相关,其中...  相似文献   

13.
Given the scarcity of instrumental climatic data in the South American tropics, it is valuable to explore the dendrochronological potential of the numerous tree species growing in the region. In this paper, we assessed for the first time the dendrochronological characteristics of Schinopsis brasiliensis, an arboreal species from the dry-tropical Cerrado and Chaco forests in Bolivia and adjacent countries. Similar to most woody species in the Cerrado and Chaco regions, growth rings of S. brasiliensis are delimited by the presence of thin but continuous lines of marginal parenchyma. Based on 22 samples from 15 trees, we present the first ring-width chronology for this species covering the period 1812–2011 (200 years). Additionally, a 106-year floating chronology from S. brasiliensis was developed using cores from four columns from the church of San Miguel, Santa Cruz, built in the period 1720–1740. Standard dendrochronological statistics indicate an important common signal in the radial growth of S. brasiliensis. The comparison of variations in regional climate and ring widths shows that tree growth is directly related to spring-summer rainfall and inversely related to temperature. Following the winter dry season, rainfall in late spring and early summer increases soil water supply, which activates tree growth. In contrast, above-average temperatures during the same period increase evapotranspiration, intensify the water deficit and reduce radial growth. The dependence of S. brasiliensis growth on water supply is evidence of its dendrochronological potential for reconstructing past precipitation variations in the extensive tropical Cerrado and Chaco forest formations in South America. Using wood from historical buildings opens the possibility of extending the chronologies of S. brasiliensis over the past 400–500 years.  相似文献   

14.
根据北京东灵山辽东栎(Quercus wutaishanica)的年轮宽度资料,分析了该地区树木生长在1951—2010年时段对气候要素的响应特征。相关分析表明,夏季干旱胁迫是限制东灵山辽东栎树木生长的最为重要的气候要素,主要体现在与夏季(7—9月)温度的负相关关系和夏季降雨(7月)的正相关关系,另外春季(5月)温度对树木生长也有一定的限制性影响;年表与生长季节干旱指数普遍呈正相关关系,进一步证实了干旱胁迫对树木生长的限制性作用。滑动相关分析表明,年表与夏季温度负相关关系及与夏季降雨的正相关关系在近期趋于增强,这表明夏季干旱胁迫对树木生长影响作用有不断加强的趋势。辽东栎林是北京东灵山温带落叶阔叶林的优势群落,在暖干化气候不断发展背景下,辽东栎林生长的干旱胁迫效应将更加突出,对北京东灵山地区森林的生产力及固碳能力产生负面影响。  相似文献   

15.
The availability of exactly dated tree‐ring chronologies is limited in tropical regions. However, these chronologies could contribute widely to studies of the influence of natural and human‐induced factors on tropical forests. We examine the potential for building a chronology based on three sites in the miombo woodland of western Zambia. Brachystegia spiciformis Benth., a dominant species from this vegetation type, is used. Response of the chronology to several climatic factors is examined. All specimens showed very clear growth rings, and cross‐dating between radii of a tree was successful for all trees. Site chronologies could be constructed after cross‐dating of growth ring series of individual trees. The mean growth ring curves of the three sites were significantly similar, allowing for the construction of a regional chronology. Correlation function analysis between the tree‐ring chronology and regional climatic variables revealed that climate at the core of the rainy season, in December and January, has an explicit influence on tree growth. Where precipitation and relative humidity in these months influence tree growth positively, temperature correlates in a negative way. Some 20 percent of the variance in the B. spiciformis tree‐ring chronology is accounted for by wet season rainfall. The successful cross‐dating and correlation between a tree‐ring chronology and climate demonstrated in this study indicate annual ring formation in B. spiciformis trees and sensitivity to climatic conditions.  相似文献   

16.
The lack of knowledge about species with well-delimited annual rings has hampered the development of dendrochronological records in the subtropical Chaco region of South America. In this contribution, we present the first tree-ring chronology of Schinopsis lorentzii (Anacardiaceae), a dominant species in the semi-arid Chaco. Cross sections were collected near Las Lajitas, Salta, Argentina, and processed following the methods commonly used in dendrochronology. Annual growth variations between radii from a single individual and between radii from different trees were highly correlated. To determine the climatic parameters that control radial growth, we compared annual tree-ring variations against regional temperature and precipitation records. Correlation functions indicate that tree growth is highly influenced by spring–summer rainfall variations, which represent more than 80% of the total annual precipitation. The chronology, which covers the interval from 1829 to 2004, provides a context for the unprecedented increase in precipitation since the mid-1970s in the region. The climatic-sensitivity of S. lorentzii provides a unique opportunity to reconstruct precipitation variations during past centuries in the extensive semiarid regions of subtropical South America.  相似文献   

17.
Exceptional climatic events from 2003 to 2005 (scorching heat and drought) affected the whole of the vegetation in the French Mediterranean region and in particular the Scots pine (Pinus sylvestris L.), one of the most important forest tree species in this area. To understand its response to these extreme conditions, we investigated its radial growth, branch length growth, architectural development and reproduction for the period 1995–2005, and linked these variables to climatic parameters. We used four plots situated in southeastern France and presenting different levels of site quality and potential forest productivity. The results show that: (1) the climatic episode 2003–2005 was highly detrimental to the growth (bole and branches), crown development, and cone production but favored the production of male flowers; (2) these variables depend on climatic factors of both the current and previous years; (3) the 2003 scorching heat impact was strong but was mainly apparent from 2004; it was part of a 6-year-long unfavorable cycle beginning in 2000, characterized by high minimum and maximum temperatures and very dry springs; (4) in spite of a significant effect of site quality, the Scots pine’s response to extreme climatic conditions was homogeneous in the French Mediterranean area; and (5) the stress induced by poor site conditions generally resulted in the same consequences for tree growth, architecture, and reproduction as in unfavorable climatic conditions.  相似文献   

18.
根据黄土高原南北样带尺度的人工刺槐林(Robinia pseudoacacia)的年轮宽度资料,分析了该地区刺槐树木生长趋势,以及刺槐年表对气候响应随降雨梯度变化规律。研究结果表明延安以北的刺槐样点(绥德、神木)年轮指数近期趋于下降,树木有生长衰退现象;而延安以南刺槐样点(延安、富县、宜君、永寿)年轮指数近期趋于上升,树木无生长衰退现象。气候响应结果表明,刺槐年表对气候响应均以延安样点最为敏感,表现年表与温度的负相关关系,以及年表与降雨和干旱指数的正相关关系,而延安以北和以南刺槐样点对气候响应敏感性均较低。黄土高原中部延安地区地处森林草原过渡带,刺槐生长对外界环境变化最为敏感,年表中气候信号也较强;延安以南地区地处森林植被带,气候条件较为适宜刺槐林生长,因而年表中气候信号较弱;延安以北地区地处草原植被带,气候条件比较恶劣,刺槐生长对干旱气候已有一定适应性特征,因而年表中气候信号也较弱。  相似文献   

19.
We examine the climate significance in tree-ring chronologies retrieved from Sabina tibetica Kom. (Tibetan juniper) at two sites ranging in elevation from 4124 to 4693 m above sea level (a.s.l.) in the Namling region, south Tibet. The study region is under the control of semi-arid plateau temperate climate. The samples were grouped into high- and low-elevation classes and standard ring-width chronologies for both classes were developed. Statistical analysis revealed a decreasing growth rate yet increasing chronology reliability with increasing elevation. Overall, correlation analyses showed that radial growth in S. tibetica at the study sites was controlled by similar climatic factors, regardless of elevation; these factors comprised early winter (November) and early summer (May–June) temperatures as well as annual precipitation (July–June). Slight differences in the correlation between tree growth along the elevation gradient and climate variables were examined. The correlations with early winter temperature varied from significantly positive at the low-elevation site to weakly positive at the high-elevation site, whereas the correlations between radial growth and early summer temperature increased from weakly negative at the low-elevation sites to strongly negative at the high-elevation sites. The abundant precipitation through the year may have masked variations in tree growth on different elevation aspects. Our results will aid future dendroclimatological studies of Namling tree rings in south Tibet and demonstrate the potential of S. tibetica Kom. for improving our understanding of environmental impacts on tree growth.  相似文献   

20.
The knowledge of tree age is important for understanding tree growth and forest dynamics. It may be estimated by ‘direct’ methods involving growth ring counts, or by ‘indirect’ methods involving field measurements of growth rates. Direct methods are considered more accurate, but it is not clear if they are appropriate for all species, notably from the humid tropics. In this paper we assess the occurrence of annual growth rings and their utility for age estimation in three tropical tree species, Acrocarpus fraxinifolius, Dalbergia latifolia (Fabaceae) and Syzygium cumini (Myrtaceae), growing in traditional shade coffee plantations of the southern Western Ghats, India. These species previously were described as having “indistinct or absent” growth rings. We used anatomical studies, field measurements and computational methods to characterise growth rings and assess similarities between directly and indirectly estimated tree ages. Our study revealed that annual growth rings were characterised by different sets of anatomical features per species and were most distinct in the fast-growing deciduous A. fraxinifolius. Growth rates measured in the field showed annual periodicity in all three species, and reflected annual rainfall-drought cycles in D. latifolia and S. cumini. Direct age estimates were most similar to indirect estimates in D. latifolia, and least so in S. cumini. The results of direct age estimation by counting rings are consistent with them being annual in nature in tropical species with distinct and reliable annual growth ring formation. However, for species with poorly defined growth rings, indirect age estimation methods might be more useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号