首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In several acute and chronic exposures to various chemicals in vivo and in vitro, the average sister-chromatid exchange (SCE) frequencies in human, mouse, rat, and rabbit lymphocytes generally decrease with time following treatment. The rate of this decline varies, but little data have been published pertaining to the comparative kinetics of SCEs both in vivo and in vivo/in vitro (exposure of animals to the test compound and culturing of cells) simultaneously in the same tissues. In this study, a single dose of cyclophosphamide (40 mg/kg) was injected for varying periods (6-48 h) and its effects, as assessed by the induction of SCEs, were analyzed under both in vivo and in vivo/in vitro conditions in mouse bone marrow and spleen cells. In vivo, the cyclophosphamide-induced SCEs increased with increasing time up to 12 h, stayed at approximately the same level until 24 h, and then decreased with increase in post-exposure time. However, the SCE levels remained significantly higher than controls at 48 h post-exposure time in both bone marrow and spleen cells. Under in vivo/in vitro conditions, the SCEs in bone marrow decreased with increase in post-exposure time until reaching control values by 48 h post exposure. However, in spleen cells, the decrease in SCE level was gradual, and by 48 h post-exposure time, the cells still had approximately 6 times higher SCEs than the control values. These results suggest that there are pharmacokinetic differences for cyclophosphamide in mouse bone marrow and spleen. Also, there is a differential SCE response to cyclophosphamide under in vivo and in vivo/in vitro conditions.  相似文献   

2.
The effect of alleles of the Ah locus on the induction of sister-chromatid exchanges (SCE) was studied in C57Bl/6 and in DBA/2 mice treated twice intragastrically with benzo[a]pyrene (BP, 100 or 10 mg/kg b.w.). To measure the changes in the frequency of SCE, 2 protocols were used: in vivo in bone marrow cells after implantation of 5-bromodeoxyuridine (BrdU) tablets and in vivo/in vitro in spleen lymphocytes cultured with BrdU. On day 5 mice were killed and SCEs estimated in bone marrow cells. BP-DNA adducts in bone marrow and spleen were analyzed on day 5 after the same exposure to BP. In the spleen lymphocytes SCE frequencies were analyzed after an additional 48 h of culture. We found that at both doses of BP, the number of SCEs and BP-DNA adducts in bone marrow and in spleen cells was significantly higher in aryl hydrocarbon hydroxylase (AHH)-non-inducible (DBA/2) mice than in AHH-inducible (C57BL/6) mice. Only marginal induction of SCE was noted after the high dose of BP in C57BL/6 mice in bone marrow in vivo, whereas a highly significant increase in the frequency of SCEs was found in splenocytes in the in vivo/in vitro test. The spleen cells contained larger amounts of BP-DNA adducts and demonstrated higher absolute levels of SCEs than bone marrow cells. The sensitivity of both the in vivo/in vitro and the in vivo SCE test is high enough for assessment of Ah locus-linked differences in BP genotoxicity in mice at the prolonged time between treatment and cell preparation. The present data confirm the influence of inducibility of AHH in the intestine on the genotoxicity of BP to distal tissues after oral exposure to BP.  相似文献   

3.
The genotoxicity of tetrandrine, a drug potentially useful for the treatment of silicosis, was studied using the micronucleus and the sister-chromatid exchange (SCE) assay systems. Cultured Chinese hamster lung (V79) cells were used for the in vitro micronucleus and sister-chromatid exchange studies. Mouse bone marrow was used for the in vivo micronucleus assay and mouse spleen cells for the in vivo/in vitro sister-chromatid exchange analysis. The results show that SCE levels in V79 and in spleen cells were significantly elevated by treatment with tetrandrine at doses above 0.08 mg/ml and 100 mg/kg bw, respectively. Increased tetradrine-induced SCE in vitro was metabolic activation dependent. Tetrandrine failed to induce micronuclei at any of the doses tested. A decrease of replicative index with an increase in the concentration of tetrandrine was found both in vitro and in vivo. These results indicate that tetrandrine is a weak indirect-acting genotoxicant.  相似文献   

4.
The genotoxic effects of cyclophosphamide (CPP), a human and animal carcinogen requiring metabolic activation, were studied in bone marrow cells of mice and Chinese hamsters, analyzing chromosome abnormalities (CA) and sister-chromatid exchange (SCE) after a 2-h inhalation or a single intraperitoneal administration. In order to compare the genotoxicity after the different routes of administration in the dose range of 10-110 mg CPP/kg body weight, the systemic dose obtained by inhalation was calculated from blood concentrations and the inhalation duration after an analysis of the CPP blood kinetics. In NMRI mice the frequency of bone marrow cells with chromosome abnormalities was higher after aerosol exposure than after intraperitoneal administration of comparable CPP doses. In Chinese hamsters the CA frequency was similar with both exposure routes. Inhaled CPP was found to induce a higher frequency of CA and SCE in the bone marrow cells of mice compared to those of Chinese hamsters. The findings suggest that for genotoxins requiring metabolic activation species differences exist with respect to the influence of the route of entry and the sensitivity of bone marrow cells.  相似文献   

5.
G Krishna  J Nath  L Soler  T Ong 《Mutation research》1986,171(2-3):157-163
The genotoxicity of an acetone extract of locally collected airborne particles was evaluated both in vitro and in vivo using the sister-chromatid exchange (SCE) assay in mice. At the highest concentration (5.36 mg/5 ml culture), the extract caused approximately a 3-fold increase in SCEs over controls in mouse bone marrow and spleen primary cells in vitro. However, the same airborne particle extract did not induce a significant increase in the SCE level over controls in vivo in mouse bone marrow and spleen cells when administered intraperitoneally or through oral gavage. This indicates that bone marrow and spleen primary cell cultures can be used in in vitro genotoxicity studies of complex mixtures, and that the genotoxicity of airborne particles detected in the in vitro system cannot always be detected in vivo with the same cell types. In addition, the same acetone extract of airborne particles caused dose-related his+ revertants in the strain TA98 of Salmonella typhimurium, both with and without S9 activation. The significant finding of this study is that the in vitro genotoxicity results of airborne particle extract may not be very meaningful in an in vivo situation.  相似文献   

6.
In vivo inhalation exposure to styrene oxide (25, 50, 75 and 100 ppm) for 2, 4 or 20 days (25 ppm only) had no effects on chromosomal aberration rates or sister chromatid exchange (SCE) frequencies (BrdU/labelling performed in vitro) in the bone marrow cells of Chinese hamsters. The only positive response in aberration frequency was obtained when styrene oxide was injected in lethal concentration (500 mg/kg body weight, i.p.) into the animal. One animal out of six showed slightly elevated SCE values after this high dose. The response of the hepatic drug metabolizing enzymes to styrene oxide exposure was found to be rather weak, which may be due to rather high activity of epoxide hydratase in Chinese hamsters as compared to e.g. mouse.  相似文献   

7.
An in vitro sister-chromatid exchange (SCE) assay using mouse primary bone marrow and spleen cells was conducted with both direct- and indirect-acting genotoxic agents. 2,4,7-Trinitrofluorenone, a direct-acting genotoxic agent, induced a significant dose-related increase in SCEs. In both bone marrow and spleen cells, 2.0 micrograms/ml caused an approx. 3-fold increase in SCE level over control values. Cyclophosphamide, an indirect-acting genotoxicant which requires metabolic activation for its clastogenicity, induced a significant increase in SCEs in the presence of S9 from liver of rats pretreated with Aroclor-1254. A dose of 2 micrograms/ml resulted in a 2-fold increase in bone marrow and a greater than 5-fold increase in spleen cells. Benzo[a]pyrene, another indirect-acting genotoxicant, also induced significant dose-related SCE responses in both cell types. It seems that primary bone marrow and spleen cell culture systems can detect both direct- and indirect-acting genotoxicants and may be useful for routine and/or comparative cytogenetic studies.  相似文献   

8.
The induction of sister-chromatid exchanges (SCE) and chromosomal aberrations (Ch.Ab.) by the herbicide maleic hydrazide (MH) has been investigated in Chinese hamster ovary (CHO) cells grown in vitro and in bone marrow cells of mice treated in vivo. MH induces SCE and Ch.Ab. in CHO cells without metabolic activation; however, no induction of SCE was found in the in vivo experiments.  相似文献   

9.
In vivo sister chromatid exchange (SCE) frequencies have been compared between the mouse plasmacytoma NP-38 and normal bone marrow cells of the host BALB/c mouse. NP-38 cells, transplanted subcutaneously showed a two-fold increase in SCEs (4.35-5.76/cell) compared with the bone marrow cells of the host (1.65-2.14/cell). Such an increase in SCE rates was also observed in NP-38 cells metastasized in spleen, bone marrow, liver, or mesentery, upon inoculation of NP-38 cells by intravenous injection. Even in such tumor-bearing mice, the SCE rates of the bone marrow cells were equivalent to the SCE level found in uninfected mice. These results indicate that the high SCE incidence in NP-38 cells is an inherent characteristic of this tumor cell line.  相似文献   

10.
Ethyl carbamate (EC) and two related carcinogens, ethyl N-hydroxycarbamate (ENHC) and vinyl carbamated (VC), caused species-specific increase in sister-chromatid exchange (SCE) formation in the bone marrow cells of rodents. Mice exposed to 400 mg/kg of EC had SCE increases of 6-times-baseline, while rats, Chines hamsters, and golden hamsters showed 3- to 4-times-baseline increases in response to this dose. Lesser, but still significant, differences were found for ENHC and VC; the severest effects consistently occured in mice. Control bone marrow cell-cycle kinetics among the rodent species were similar. Mouse strains A and C57BL/6, which have high and low susceptibilities to EC induction of lung adenomas, respectively, showed nearly identical levels of SCE induction after in vivo exposure to these carbamate. However, testing of VC, a possible metabolite of EC, in vitro revelaed strain-dependent liver enzyme (Aroclor-induced S-9 fraction) capabilities to convert VC to genotoxic products. SCE induction, gene mutation for 6-thioguanine and ouabain resistance, and cytotoxicity in Chinese hamster V79 cells were significantly greater when A strain S-9 enzymes were used as compared with C57BL/6 strain S-9 enzyme preparations. No effect of SCE of reseeding, compared with no reseeding, of VC-treated V79 cells was observed. At a concentration of 25 μg/ml, VC cause 6-times-baselin induction of SCE in the presence of A strain S-9 mix and 4-times-baseline induction in the presence of C57BL/6 strain S-9 mix. These in vitro strain-dependent patterns of response are relevant to the current theory that VC amy be a proximate carcinogenic metabolite of EC.  相似文献   

11.
Two naturally occurring fungal mycotoxins, sterigmatocystin and griseofulvin, were tested for induction of sister-chromatid exchanges (SCEs) in bone marrow cells of female Swiss albino mice. Sterigmatocystin gave elevated SCE frequencies at all doses tested (0.06-6.0 mg/kg). In contrast, griseofulvin, tested from 0.4 to 200 mg/kg, elevated the SCE frequency only in those mice which received doses of 100 or 200 mg/kg body weight. These results indicate that both fungal mycotoxins induce SCE in vivo and are potentially mutagenic.  相似文献   

12.
The induction of sister-chromatid exchange (SCE) by triethylene melamine (TEM), a known animal carcinogen, was investigated in an in vivo exposure/in vitro culture murine lymphocyte assay. Dose-related increases in SCE were observed in B6D2F1 mice following a single i.p. injection of 0.5, 1 or 2 mg/kg TEM. SCE frequencies remained elevated over baseline levels at 24 h post exposure. It is hoped that studies of this nature can determine whether the in vivo/in vitro murine lymphocyte SCE assay is useful for predicting the carcinogenic potential of an agent.  相似文献   

13.
Summary The in vivo SCE formation and the induction of chromosome aberrations in the bone marrow of Chinese hamsters (Cricetulus griseus) were studied after various concentrations of cyclophosphamide, and the sensitivity of the two test methods was compared. The administration of 1.0, 5.0, 13.3, 25.0, and 40.0 mg/kg body weight induced a dose-dependent increase in SCE. The frequency of chromosome aberration, however, was not increased significantly with doses of 1.0 and 5.0 mg/kg body weight. Only with doses of more than 13.3 mg is a significant induction of chromosome aberrations seen. Therefore the SCE test system seems to be 10 times more sensitive than the induction of chromosome aberrations in the same cell type.This work is a part of the M.D. thesis of G. Roszinsky-Köcher, to whom offprint requests should be sent  相似文献   

14.
Selenium monosulfide (Ses) was reported to be carcinogenic to livers of male and female rats and livers and lungs of female mice. However, its genotoxicity profile in short-term assays is somewhat equivocal. A multiple endpoint/multiple tissue approach to short-term genetic toxicity testing has been developed in our laboratory. In the present paper, the effect of SeS in in vivo and in vivo/ in vitro micronucleus and chromosome aberration assays in rat bone marrow and spleen are reported. In the in vivo assay, small but statistically significant increases in bone marrow micronucleated polychromatic erythrocytes (MNPCEs) were observed 24 h after treatment of rats with 50 mg/kg SeS and 48 h after treatment with 12.5 mg/kg. A significant decrease in the PCE/total erythrocyte (TE) ratio, indicative of cytotoxicity, was observed at the 50 mg/kg dose at the 24-h timepoint. In spleen, no increases in MNPCEs or decreases in the PCE/TE ratios were observed. No evidence of a significant increase in aberrations was observed in bone marrow or spleen. In the in vivo/in vitro assay, no increase in micronucleated binucleated cells or cells with aberrations was observed in SeS-treated rats. The small but statistically significant increases in MN observed in the in vivo study are considered likely not to be biologically significant since no dose-response was observed and all the values obtained were within historical control range in our laboratory. Given the overall genetic toxicity profile of SeS, it appears that SeS may be a weak mutagen and that differences between testing protocols may be very important in determining whether or not it is found to be negative or positive. Histological evidence was obtained in this study that suggests that the liver is the acute target organ of SeS in rats. Given the fact that SeS is selectively hepatocarcinogenic, we are currently testing the hypothesis that the genotoxicity of SeS in rats may be more readily detectable in liver than in bone marrow or spleen.  相似文献   

15.
The purpose of this investigation was to study the genotoxic potential of fluoride (in the form of sodium fluoride, NaF) using in vitro and in vivo sister-chromatid exchange (SCE) assays with Chinese hamster cells. The NaF concentrations used in cultures of Chinese hamster ovary (CHO) cells ranged from 0 to 6.3 mM, both with and without S9 activation. Fluoride analysis of the culture medium demonstrated that it contained little indigenous fluoride, and the concentration of added fluoride was not affected by the components of the medium or the S9 mix. The CHO cells cultured in 6.3 mM NaF almost vanished, and at the concentration of 5.3 mM NaF in cultures without S9 microsome, only M1 cells were observed. In in vivo studies, Chinese hamsters were intubated with NaF dosages of 0, 0.1, 1.0, 10, 60 and 130 mg/kg, and the bone marrow (CHBM) cells were examined for SCE frequencies. Bone fluoride data showed that the intubated NaF was effectively absorbed. Death occurred in 3 of the 8 animals given 130 mg NaF/kg. The results indicated that NaF, in dosages up to 5.3 mM in CHO cell cultures and 130 mg/kg in in vivo CHBM cells, did not significantly increase the SCE frequencies over those observed in the negative (distilled water) controls. However, examination of the cell cycle revealed an inhibitory effect of NaF on cell proliferation with doses of NaF at or greater than 1.0 mM in cultured CHO cells and at or greater than 60 mg NaF/kg in in vivo CHMB cells. The results of the present study indicated an inhibition of the cell cycle and death of the cells with increasing concentrations of fluoride but not effect of fluoride on SCE frequency in CHO and CHBM cells.  相似文献   

16.
Diepoxybutane (DEB), a direct-acting animal carcinogen, was found to increase the frequency of structural chromosomal abnormalities (CA) and sister-chromatid exchange (SCE) in bone marrow cells of mice and Chinese hamsters, when inhaled from an aerosol during a 2-h head-only exposure or administered as a single intraperitoneal injection. For the purpose of comparing the genotoxicity in the 2 species, both after inhalation and intraperitoneal administration, the systemic DEB dose obtained by inhalation was determined on the basis of blood concentrations and inhalation duration after the investigation of the blood kinetics. The bone marrow cells of male and female NMRI mice were found to be more sensitive than those of Chinese hamsters to the genotoxic activity of DEB.  相似文献   

17.
Two pesticides, the fungicide Endodan (ethylene thiuram monosulphide) and the insecticide-acaricide Kilacar (bis(parachlorophenyl)cyclopropyl methanol), produced or used in the neighbouring countries of Bulgaria and Greece were investigated in a coordinated research programme for their genotoxic effects in a variety of test systems. This included the Ames test, Aspergillus nidulans for mitotic segregation, in vitro human lymphocyte cell cultures for SCE and chromosomal aberrations, in vivo bone marrow cells in hamsters and rats and the dominant lethal test in rats. The genotoxicity of Endodan was found to range from negative to slightly positive in different test systems. At concentrations of 7.5 and 12.0 micrograms/plate together with S9 mix it induced base-pair substitutions in the TA100 strain of Salmonella typhimurium at a rather low level. At a dose of 93 mg/kg b.w. it also caused chromosomal aberrations in acutely treated hamster bone marrow cells. A significant increase of SCE was also found in human lymphocyte cultures at a concentration of 20.0 micrograms/ml. Endodan was found to be negative in A. nidulans for somatic segregation, lymphocyte cultures for chromosomal aberrations and mitotic activity and in rats for dominant lethals and chromosomal aberrations. Kilacar was found to be a weak mutagen in the TA97 strain of S. typhimurium at concentrations of 2.5 and 5.0 micrograms/plate together with S9 mix. At concentrations of 1.0, 1.5 and 2 micrograms/ml Kilacar increased the number of mitotic segregants in A. nidulans by 160%, 220% and 156% respectively over the control. In Syrian hamster bone marrow cells after acute administration at concentrations of 0, 40, 80 and 160 mg/kg, the MI was 5.50, 4.30, 3.10 and 1.30 respectively, and an increase in chromosomal aberrations of about 300% over the control was observed with a concentration of 80 mg/kg. In human lymphocytes no significant changes were observed in either MI or SCE. In the dominant lethal test after chronic treatment of male rats at doses of 5.1, 10.2 and 102.0 mg/kg b.w. no significant mutagenic effect was found although a decrease was shown in the percentage of females with implants mated with treated males in the first week.  相似文献   

18.
Previous studies have shown that iodinated glycerol azeo is positive in a number of in vitro mutagenicity assays including the Ames assay (TA100; TA1535), mouse lymphoma assay, Chinese hamster ovary (cytogenetic) assay and in one in vivo study, the sex-linked-recessive-lethal assay in Drosophila. Prior studies have also shown that the drug is negative in the mouse micronucleus assay. We now report that the drug is also negative for mutagenic activity in a number of other in vivo tests. Single intraperitoneal doses of 25, 125 and 250 mg/kg were without effect in the rat bone marrow chromosomal aberration assay. Single oral doses of 30, 75, 150 and 300 were negative in the rat hepatocyte DNA-repair assay. Single intraperitoneal doses of 30 and 100 mg/kg were without effect in the sister chromatid exchange (SCE) assay in the mouse. Statistically significant effects were seen at 200 and 300 mg/kg in the initial SCE assay and at 300 and 350 mg/kg in the confirmatory SCE assay. The rationale for considering the SCE results to be anomalous and thus not relative to the overall safety evaluation of the drug is presented.  相似文献   

19.
Summary A transplantable mouse leukemia model, the leukemia cell of which has a marker chromosome and the XX genome type which differ obviously from their male host cells provides a possibility to precisely identify the leukemia cells among their male host cells cytogenetically. A sister chromatid exchange (SCE) plus chromosomal C-banding technique that we report here is very useful. The SCE frequencies in vivo of both leukemia cells and host cells were twice as high as the normal mouse cells. The higher SCE frequencies of the host cells in the leukemia mice may be due to some toxicities from the leukemia cells or some biological large molecule exchanges between the leukemia cells and the host cells. There was no significant difference in SCE frequencies between cells from the spleen and from the bone marrow of the leukemia mice. The percentages of leukemia cells in both spleen and bone marrow were more than 90% when the mice had been injected with the leukemia cells for five days. The host cells in the leukemia mice did not become leukemia cells. The 5FU-treated leukemia mice survived very well for more than twenty-three days. After the 5FU-treatments, most of the leukemia cells died, subsequently, SCE frequencies decreased to a normal level. Both the number of Ag-NORs per cell and the number of chromosomes bearing Ag-NORs per cell in the leukemia mice decreased to 60% and 40%, respectively, of the level found in normal mouse cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号