共查询到20条相似文献,搜索用时 15 毫秒
1.
Alu repeats in the human genome 总被引:3,自引:0,他引:3
Highly repetitive DNA sequences account for more than 50% of the human genome. The L1 and Alu families harbor the most common mammalian long (LINEs) and short (SINEs) interspersed elements. Alu elements are each a dimer of similar, but not identical, fragments of total size about 300 bp, and originate from the 7SL RNA gene. Each element contains a bipartite promoter for RNA polymerase III, a poly(A) tract located between the monomers, a 3'-terminal poly(A) tract, and numerous CpG islands, and is flanked by short direct repeats. Alu repeats comprise more than 10% of the human genome and are capable of retroposition. Possibly, these elements played an important part in genome evolution. Insertion of an Alu element into a functionally important genome region or other Alu-dependent alterations of gene functions cause various hereditary disorders and are probably associated with carcinogenesis. In total, 14 Alu families differing in diagnostic mutations are known. Some of these, which are present in the human genome, are polymorphic and relatively recently inserted into new loci. Alu copies transposed during ethnic divergence of the human population are useful markers for evolutionary genetic studies. 相似文献
2.
3.
The analysis of the genetic variability associated to Alu sequences was hampered by the absence of genome-wide methodologies able to efficiently detect new polymorphisms/mutations among these repetitive elements. Here we describe two Alu insertion profiling (AIP) methods based on the hybridization of Alu-flanking genomic fragments on tiling microarrays. Protocols are designed to preferentially detect active Alu subfamilies. We tested AIP methods by analyzing chromosomes 1 and 6 in two genomic samples. In genomic regions covered by array-features, with a sensitivity of 2% (AIP1) -4% (AIP2) and 5% (AIP1) -8% (AIP2) for the old J and S Alu lineages respectively, we obtained a sensitivity of 67% (AIP1) -90% (AIP2) for the young Ya subfamily. Among the loci showing sample-to-sample differences, 5 (AIP1) -8 (AIP2) were associated to known Alu polymorphisms. Moreover, we were able to confirm by PCR and DNA sequencing 4 new intragenic Alu elements, polymorphic in 10 additional individuals. 相似文献
4.
5.
Lobachev KS Stenger JE Kozyreva OG Jurka J Gordenin DA Resnick MA 《The EMBO journal》2000,19(14):3822-3830
The nearly one million ALU: repeats in human chromosomes are a potential threat to genome integrity. ALU:s form dense clusters where they frequently appear as inverted repeats, a sequence motif known to cause DNA rearrangements in model organisms. Using a yeast recombination system, we found that inverted ALU: pairs can be strong initiators of genetic instability. The highly recombinagenic potential of inverted ALU: pairs was dependent on the distance between the repeats and the level of sequence divergence. Even inverted ALU:s that were 86% homologous could efficiently stimulate recombination when separated by <20 bp. This stimulation was independent of mismatch repair. Mutations in the DNA metabolic genes RAD27 (FEN1), POL3 (polymerase delta) and MMS19 destabilized widely separated and diverged inverted ALU:s. Having defined factors affecting inverted ALU: repeat stability in yeast, we analyzed the distribution of ALU: pairs in the human genome. Closely spaced, highly homologous inverted ALU:s are rare, suggesting that they are unstable in humans. ALU: pairs were identified that are potential sites of genetic change. 相似文献
6.
Evidence is accumulating that the two major families of interspersed repeated human DNA sequences, Alu and L1, are not randomly distributed. However, only limited information is available on their relative long-range distribution. We have analyzed a set of randomly selected, human Chromosome (Chr) 11-specific YAC recombinants constituting a total length of about 2 Mbp for the local and global distribution of Alu and L1 repeats: the data show a strong asymmetry in the distribution of these two repeat classes and give weight, at the long-range molecular level, to previous studies indicating their partition in the human genome; they also suggest a strong tendency for L1 repeats to cluster, with a higher proportion of full-length elements than expected. 相似文献
7.
8.
A mathematical model of evolutionary dynamics of Alu repeats' number in the human genome has been worked out. The model permitted us to observe the dynamics of propagation of Alu repeats within the genome and to evaluate such important parameters of the process mentioned as the rates of transposition (insertion of new copies into the genome) and excision of repeats. The peculiarities of the control of Alu repeats' number in the genome have been discussed, based on the data obtained. 相似文献
9.
During the past 65 million years, Alu elements have propagated to more than one million copies in primate genomes, which has resulted in the generation of a series of Alu subfamilies of different ages. Alu elements affect the genome in several ways, causing insertion mutations, recombination between elements, gene conversion and alterations in gene expression. Alu-insertion polymorphisms are a boon for the study of human population genetics and primate comparative genomics because they are neutral genetic markers of identical descent with known ancestral states. 相似文献
10.
A polymorphic Alu element belonging to the young Ya5 subfamily of Alu repeats located in the progesterone receptor gene has been characterized. Using a polymerase chain reaction (PCR)-based assay, the genetic diversity associated with the PROGINS Alu repeat was determined in a diverse array of human populations. The level of insertion polymorphism associated with PROGINS suggests that it will be a useful marker for the study of human evolution. In addition, we determined the distribution of the PROGINS Alu insertion in two groups of women from greater New Orleans, LA with breast cancer. The PROGINS Alu insertion was not associated with breast cancer in the populations tested. 相似文献
11.
Evolution of Alu repeats surrounding the human ferredoxin gene 总被引:1,自引:0,他引:1
Ferredoxin is an iron-sulfur protein that serves as an electron carrier for the mitochondrial oxidation/reduction system. During the characterization of the human ferredoxin gene, we have identified three Alu sequences surrounding it. When these Alu sequences were compared with others, all three of them are more related to the consensus Alu than the 7SL gene, the progenitor of the Alu family. It suggests that they are members of the modern Alu family. Their sequences differ from the Alu consensus sequence by about 5%, indicating that they were inserted into the chromosome about 35 million years ago. 相似文献
12.
Alu elements undergo amplification through retroposition and integration into new locations throughout primate genomes. Over
500,000 Alu elements reside in the human genome, making the identification of newly inserted Alu repeats the genomic equivalent
of finding needles in the haystack. Here, we present two complementary methods for rapid detection of newly integrated Alu
elements. In the first approach we employ computational biology to mine the human genomic DNA sequence databases in order
to identify recently integrated Alu elements. The second method is based on an anchor-PCR technique which we term Allele-Specific
Alu PCR (ASAP). In this approach, Alu elements are selectively amplified from anchored DNA generating a display or 'fingerprint'
of recently integrated Alu elements. Alu insertion polymorphisms are then detected by comparison of the DNA fingerprints generated
from different samples. Here, we explore the utility of these methods by applying them to the identification of members of
the smallest previously identified subfamily of Alu repeats in the human genome termed Ya8. This subfamily of Alu repeats
is composed of about 50 elements within the human genome. Approximately 50% of the Ya8 Alu family members have inserted in
the human genome so recently that they are polymorphic, making them useful markers for the study of human evolution.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
13.
14.
Association of hY4 pseudogenes with Alu repeats and abundance of hY RNA-like sequences in the human genome. 总被引:3,自引:0,他引:3
Three loci having homology with the small human cytoplasmic RNA, hY4, were isolated from human genomic DNA libraries and sequenced. Each sequence contains dispersed mismatches as compared with hY4 RNA, is followed by an A-rich or A + T-rich sequence, and is bordered by direct repeats. Each of these loci, therefore, appears to constitute a small RNA class-III pseudogene. Surprisingly, two of the three loci are associated with Alu repeats. In the hY4.B7 locus, the hY4 sequence has integrated into the tail of an Alu element and in the hY4.F2 locus, an Alu sequence has inserted into the hY4 tail, confirming that A-rich tracts are preferential targets for retroposition. In addition, Southern blots with probes for each of the four hY RNAs indicate that hY RNA-like sequences are abundant in the human genome. 相似文献
15.
Friedreich ataxia is caused by expansion of a GAA triplet repeat (GAA-TR) in the FRDA gene. Normal alleles contain <30 triplets, and disease-causing expansions (66-1700 triplets) arise via hyperexpansion of premutations (30-65 triplets). To gain insight into GAA-TR instability we analyzed all triplet repeats in the human genome. We identified 988 (GAA)(8+) repeats, 291 with >or=20 triplets, including 29 potential premutations (30-62 triplets). Most other triplet repeats were restricted to <20 triplets. We estimated the expected frequency of (GAA)(6+) repeats to be negligible, further indicating that GAA-TRs have undergone significant expansion. Eighty-nine percent of (GAA)(8+) sequences map within G/A islands, and 58% map within the poly(A) tails of Alu elements. Only two other (GAA)(8+) sequences shared the central Alu location seen at the FRDA locus. One showed allelic variation, including expansions analogous to short Friedreich ataxia mutations. Our data demonstrate that GAA-TRs have expanded throughout primate evolution with the generation of potential premutation alleles at multiple loci. 相似文献
16.
DNA repeats in the human genome 总被引:5,自引:1,他引:5
17.
18.
U Hellmann-Blumberg M F Hintz J M Gatewood C W Schmid 《Molecular and cellular biology》1993,13(8):4523-4530
Alu repeats are especially rich in CpG dinucleotides, the principal target sites for DNA methylation in eukaryotes. The methylation state of Alus in different human tissues is investigated by simple, direct genomic blot analysis exploiting recent theoretical and practical advances concerning Alu sequence evolution. Whereas Alus are almost completely methylated in somatic tissues such as spleen, they are hypomethylated in the male germ line and tissues which depend on the differential expression of the paternal genome complement for development. In particular, we have identified a subset enriched in young Alus whose CpGs appear to be almost completely unmethylated in sperm DNA. The existence of this subset potentially explains the conservation of CpG dinucleotides in active Alu source genes. These profound, sequence-specific developmental changes in the methylation state of Alu repeats suggest a function for Alu sequences at the DNA level, such as a role in genomic imprinting. 相似文献
19.
V G Levitsky O A Podkolodnaya N A Kolchanov N L Podkolodny 《Bioinformatics (Oxford, England)》2001,17(11):1062-1064
A program for constructing nucleosome formation potential profile was applied for investigation of exons, introns, and repetitive sequences. The program is available at http://wwwmgs.bionet.nsc.ru/mgs/programs/recon/. We have demonstrated that introns and repetitive sequences exhibit higher nucleosome formation potentials than exons. This fact may be explained by functional saturation of exons with genetic code, hindering the localization of efficient nucleosome positioning sites. 相似文献
20.
Umylny B Presting G Efird JT Klimovitsky BI Ward WS 《Journal of cellular biochemistry》2007,102(1):110-121
Alus and B1s are short interspersed repeat elements (SINEs) indirectly derived from the 7SL RNA gene. While most researchers recognize that there exists extensive variability between individual elements, the extent of this variability has never been systematically tested. We examined all Alu elements over 200 nucleotides and all B1 elements over 100 nucleotides in the human and mouse genomes, and analyzed the number of copies of each element at various stringencies from 22 nucleotides to full length. Over 98% of 923,277 Alus and 365,377 B1s examined were unique when queried at full length. When the criterion was reduced to half the length of the repeat, 97% of the Alus and 73% of the B1s were still found to be a single copy. All single and multi-copy sequences have been mapped and documented. Access to the data is possible using the AluPlus website http://www.ibr.hawaii.edu. 相似文献