首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythrocytes from vitamin E-deficient and control rats were peroxidized by glucose oxidase-glucose or dialuric acid. Losses of polyunsaturated fatty acids from membrane phospholipids, and of dimethylacetals from plasmalogens, were quantitated by gas-liquid chromatography. Similar treatment of solubilized or micellar phospholipids or plasmalogens in vitro showed that in both erythrocytes and micellar systems, arachidonic acid and the 16-carbon plasmalogen are most susceptible to peroxidation by either reagent. The same narrow concentration range of dialuric acid found effective in peroxidizing erythrocytes from tocopherol-deficient rats was also found effective in peroxidizing micellar phospholipids in vitro.Partially peroxidized erythrocytes from tocopherol-deficient rats were subjected to treatment with phospholipase A or phospholipase C. Hemolysis by either phospholipase was accelerated in partially peroxidized cells as compared to controls, suggesting that peroxidation exposes both polar and nonpolar lipid sites in the erythrocyte membrane.  相似文献   

2.
Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has recently been reported to have the antioxidative activity in vitro. However, it is still unclear whether chronic treatment with this drug actually leads to amelioration of the redox status in the body. In this study, we investigated the antioxidative effect of fluvastatin in vivo, using a vitamin E-deficient hamster model, an in vivo model of enhanced oxidative stress. After pre-treatment with a vitamin E-deficient diet for 2 months, fluvastatin, pravastatin or probucol was added to the diet for 1 month. Vitamin E deficiency caused a significant increase in the levels of plasma oxidative stress markers such as 8-iso-prostaglandin F2α (8-iso-PGF2α) and hydroperoxides. Furthermore, there was a significant increase in the oxidizability of plasma lipids in the vitamin E-deficient animals, indicating that the oxidative stress was increased in the circulation. Fluvastatin markedly depressed the above oxidative stress markers in plasma, and significantly decreased the oxidizability of plasma lipids without affecting their levels. Probucol, a reference antioxidant, also showed a similar effect while pravastatin, another HMG-CoA reductase inhibitor, showed only a weak improvement. We suggest that the treatment with fluvastatin leads to a reduction of oxidative stress in vivo, which is mainly derived from its antioxidative property rather than its lipid-lowering activity.  相似文献   

3.
4.
Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has recently been reported to have the antioxidative activity in vitro. However, it is still unclear whether chronic treatment with this drug actually leads to amelioration of the redox status in the body. In this study, we investigated the antioxidative effect of fluvastatin in vivo, using a vitamin E-deficient hamster model, an in vivo model of enhanced oxidative stress. After pre-treatment with a vitamin E-deficient diet for 2 months, fluvastatin, pravastatin or probucol was added to the diet for 1 month. Vitamin E deficiency caused a significant increase in the levels of plasma oxidative stress markers such as 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) and hydroperoxides. Furthermore, there was a significant increase in the oxidizability of plasma lipids in the vitamin E-deficient animals, indicating that the oxidative stress was increased in the circulation. Fluvastatin markedly depressed the above oxidative stress markers in plasma, and significantly decreased the oxidizability of plasma lipids without affecting their levels. Probucol, a reference antioxidant, also showed a similar effect while pravastatin, another HMG-CoA reductase inhibitor, showed only a weak improvement. We suggest that the treatment with fluvastatin leads to a reduction of oxidative stress in vivo, which is mainly derived from its antioxidative property rather than its lipid-lowering activity.  相似文献   

5.
Activities of aortae to produce prostaglandin (PG) I2-like substance in stroke-prone spontaneously hypertensive rats (SHRSP), stroke-resistant SHR (SHRSR) and normotensive control rats from the Wistar-Kyoto (WK) colony were compared. PGI2-like substance was produced by the incubation of the aortic ring in pH 9.0 borate-buffered saline and the amount produced was estimated by comparison of its anti-aggregatory activity with that produced by known amounts of the sodium salt of synthetic PGI2. Before the development of stroke, amounts of this substance generated in SHRSP and SHRSR were significantly higher than those in WK rats (p<0.01 and p<0.02, respectively). Remarkably reduced capacity to generate PGI2-like substance was observed in some SHRSP after the development of stroke.  相似文献   

6.
7.
8.
Lipid peroxidation in kidney of rats fed with vitamin B-6 deficient diet for a period of 12 weeks was studied with pair-fed controls. The basal lipid peroxide level as well as the degree of susceptibility to lipid peroxidation in presence of promotors such as NADPH, ascorbate, t-butyl hydroperoxide, Fe2+, Cu2+ and oxalate, were increased in vitamin B-6 deficient kidney. The observed increased lipid peroxidation in vitamin B-6 deficient kidney was correlated with high levels of lipids, copper, iron, calcium and oxalate, low levels of antioxidants and antioxidant enzymes and increased levels of hydroperoxides and hydroxyl radicals.  相似文献   

9.
A soybean protein diet was used to induce vitamin E deficiency in rhesus monkeys. The deficient monkeys had reduced triglyceride concentrations in liver and skeletal muscle, but the cholesterol concentration in their skeletal muscle was increased. A constant amount of radioactively labeled (3)H-cholesterol-7alpha-(3)H was fed daily for 48-114 days to control and vitamin E-deficient monkeys to study the relationship between plasma, liver, and skeletal muscle cholesterol. Plasma cholesterol reached constant, maximum specific activity by the 42nd day both in control and in vitamin E-deficient monkeys. In control and previously deficient vitamin E-treated monkeys the specific activity of cholesterol in liver and skeletal muscle was approximately equal to that of plasma. In vitamin E-deficient monkeys the liver cholesterol specific activity was equal to that of plasma cholesterol, but the ratio of skeletal muscle cholesterol specific activity to plasma cholesterol specific activity was reduced. It is concluded from these studies that there is a specific defect(s) in cholesterol metabolism in the skeletal muscle of vitamin E-deficient monkeys.  相似文献   

10.
Activities of aortae to produce prostaglandin (PG) I2-like substance in stroke-prone spontaneously hypertensive rats (SHRSP), stroke-resistant SHR (SHRSR) and normotensive control rats from the Wistar-Kyoto (WK) colony were compared. PGI2-like substance was produced by the incubation of the aortic ring in pH 9.0 borate-buffered saline and the amount produced was estimated by comparison of its anti-aggregatory activity with that produced by known amounts of the sodium salt of synthetic PGI2. Before the development of stroke, amounts of this substance generated in SHRSP and SHRSR were significantly higher than those in WK rats (p less than 0.01 and p less than 0.02, respectively). Remarkably reduced capacity to generate PGI2-like substance was observed in some SHRSP after the development of stroke.  相似文献   

11.
Lipid peroxidation in blood of vitamin B6 deficient rats was significantly increased when compared to pair-fed controls. The observed increased lipid peroxidation in vitamin B6 deficiency was correlated with high levels of lipids, metal ions and low levels of antioxidants, alpha-tocopherol, ascorbic acid and reduced GSH. Supplementation of methionine or vitamin E along with the vitamin B6 deficient diet restored the levels of antioxidants to near normal and also protected against oxidative stress. However plasma TBARS level as well as total lipids were still elevated in M-B6 diet fed rats and normalized in E-B6-d rats.  相似文献   

12.
Rats fed a vitamin E-deficient diet for 7–8 weeks postweaning showed no change in brain weight or the activity in brain of various enzymes involved in neurotransmitter synthesis and metabolism. Body and muscle weights were markedly reduced. Muscle choline acetyltransferase and acetylcholinesterase activities were significantly elevated on a protein basis, but the total amount of choline acetyltransferase/muscle was essentially normal and total acetylcholinesterase activity was slightly reduced. Total carnitine acetyltransferase and butyrylcholinesterase activities were markedly decreased. The results are quite different from those found in hereditary murine muscular dystrophy and suggest a myogenic etiology for the vitamin E-deficiency-induced condition.  相似文献   

13.
14.
ω6- and ω3-unsaturated lipid hydroperoxides decompose to yield pentane and ethane, respectively. Alloxan toxicity was studied in rats in relation to pentane and ethane produced during lipid peroxidation induced by intraperitoneal injection of 20 mg of alloxan/100 g body wt. Fifteen minutes after injection, vitamin E-deficient rats exhaled 102- and 11.2-fold more pentane and ethane, respectively, than prior to injection. Injection of 75 mg ascorbic acid/100 g body wt 30 min prior to alloxan treatment prolonged the time over which peroxidation occurred and all vitamin E-deficient rats died before 4 h. Vitamin E-deficient rats injected with 100 mg of the radical scavenger mannitol/ 100 g body wt 30 min prior to alloxan treatment were completely protected against lipid peroxidation, and none of the rats died by 4 h. Rats fed 40 iu dl-α-tocopherol acetate/kg diet or injected with 100 mg dl-α-tocopherol/100 g body wt were either totally protected against alloxan and alloxan-ascorbic acid-induced peroxidation or were only slightly affected as shown by very low-level pentane and ethane production. Thiobarbituric acid reactants in plasma, liver and pancreas 4 h after alloxan treatment reflected the prooxidant nature of ascorbic acid and alloxan, the vitamin E status of the rats and the protective effect of mannitol. Plasma glucose levels 4 h after alloxan injection were lowest in vitamin E-injected rats and highest in vitamin E-deficient rats. Only in vitamin E-deficient rats were both lipid peroxidation and significantly elevated plasma glucose levels observed by 4 h post-alloxan treatment.  相似文献   

15.
Anthocyanins are secondary plant metabolites responsible for the blue, purple, and red color of many plant tissues. The phenolic structure of anthocyanins conveys marked antioxidant activity in model systems via donation of electrons or hydrogen atoms from hydroxyl moieties to free radicals. Dietary intakes of anthocyanins may exceed 200 mg/day, however, little is known about their antioxidant potency in vivo. Consequently, the aim of this study was to establish whether anthocyanins could act as putative antioxidant micronutrients. Rats were maintained on vitamin E-deficient diets for 12 weeks in order to enhance susceptibility to oxidative damage and then repleted with rations containing a highly purified anthocyanin-rich extract at a concentration of 1 g/kg diet. The extract consisted of the 3-glucopyranoside forms of delphinidin, cyanidin, petunidin, peonidin, and malvidin. Consumption of the anthocyanin-repleted diet significantly improved (p <.01) plasma antioxidant capacity and decreased (p <.001) the vitamin E deficiency-enhanced hydroperoxides and 8-Oxo-deoxyguanosine concentrations in liver. These compounds are indices of lipid peroxidation and DNA damage, respectively. Dietary consumption of anthocyanin-rich foods may contribute to overall antioxidant status, particularly in areas of habitually low vitamin E intake.  相似文献   

16.
17.
18.
19.
Increased intake of Cd results in its retention and in peroxidative damage in soft tissues. Coadministration of antioxidants, viz., glutathione (GSH), α-tocopherol, and Se, restricted the uptake and distribution of Cd in liver and kidney of rats. Moreover, no rise in malondialdehyde was recorded. Although possible antioxidative mechanisms manifested by GSH, α-tocopherol, and Se have been discussed, it is hypothesized that GSH functions as a Cd chelator. Glutathione yielded favorable effects in comparison to Se and α-tocopherol.  相似文献   

20.
Disorders of the developing nervous system of vitamin E-deficient rats   总被引:4,自引:0,他引:4  
K Verma  D Wei King 《Acta anatomica》1967,67(4):623-635
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号