首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Poly(rC) binding protein 2 (PCBP2) forms a specific ribonucleoprotein (RNP) complex with the 5'-terminal sequences of poliovirus genomic RNA, as determined by electrophoretic mobility shift assay. Mutational analysis showed that binding requires the wild-type nucleotide sequence at positions 20-25. This sequence is predicted to localize to a specific stem-loop within a cloverleaf-like secondary structure element at the 5'-terminus of the viral RNA. Addition of purified poliovirus 3CD to the PCBP2/RNA binding reaction results in the formation of a ternary complex, whose electrophoretic mobility is further retarded. These properties are consistent with those described for the unidentified cellular protein in the RNP complex described by Andino et al. (Andino R, Rieckhof GE, Achacoso PL, Baltimore D, 1993, EMBO J 12:3587-3598). Dicistronic RNAs containing mutations in the 5' cloverleaf-like structure of poliovirus that abate PCBP2 binding show a decrease in RNA replication and translation of gene products directed by the poliovirus 5' noncoding region in vitro, suggesting that the interaction of PCBP2 with these sequences performs a dual role in the virus life cycle by facilitating both viral protein synthesis and initiation of viral RNA synthesis.  相似文献   

2.
The limited coding capacity of picornavirus genomic RNAs necessitates utilization of host cell factors in the completion of an infectious cycle. One host protein that plays a role in both translation initiation and viral RNA synthesis is poly(rC) binding protein 2 (PCBP2). For picornavirus RNAs containing type I internal ribosome entry site (IRES) elements, PCBP2 binds the major stem-loop structure (stem-loop IV) in the IRES and is essential for translation initiation. Additionally, the binding of PCBP2 to the 5'-terminal stem-loop structure (stem-loop I or cloverleaf) in concert with viral protein 3CD is required for initiation of RNA synthesis directed by poliovirus replication complexes. PCBP1, a highly homologous isoform of PCBP2, binds to poliovirus stem-loop I with an affinity similar to that of PCBP2; however, PCBP1 has reduced affinity for stem-loop IV. Using a dicistronic poliovirus RNA, we were able to functionally uncouple translation and RNA replication in PCBP-depleted extracts. Our results demonstrate that PCBP1 rescues RNA replication but is not able to rescue translation initiation. We have also generated mutated versions of PCBP2 containing site-directed lesions in each of the three RNA-binding domains. Specific defects in RNA binding to either stem-loop I and/or stem-loop IV suggest that these domains may have differential functions in translation and RNA replication. These predictions were confirmed in functional assays that allow separation of RNA replication activities from translation. Our data have implications for differential picornavirus template utilization during viral translation and RNA replication and suggest that specific PCBP2 domains may have distinct roles in these activities.  相似文献   

3.
Poly(rC) binding protein 2 (PCBP2) is one of several cellular proteins that interact specifically with a major stem-loop domain in the poliovirus internal ribosome entry site. HeLa cell extracts subjected to stem-loop IV RNA affinity chromatography were depleted of all detectable PCBP2. Such extracts were unable to efficiently translate poliovirus RNA, although extracts recovered from control columns of matrix unlinked to RNA retained full translation activity. Both translation and production of infectious progeny virus were restored in the PCBP2-depleted extracts by addition of recombinant PCBP2, but not by PCBP1, which is a closely related member of the protein family. The data show that PCBP2 is an essential factor, which is required for efficient translation of poliovirus RNA in HeLa cells.  相似文献   

4.
Mutations in the 5' untranslated regions (5'-UTRs) of all three serotypes of the Sabin vaccine strains are known to be major determinants of the attenuation phenotype. To further understand the functional basis of the attenuation phenotype caused by mutations in the 5'-UTR, we studied their effects on viral replication, translation, and the interaction of the viral RNA with cell proteins. A mutation at base 472 (C472U), which attenuates neurovirulence in primates and mice, was previously found to reduce viral replication and translation in neuroblastoma cells but not in HeLa cells. This mutation reduced cross-linking of the poliovirus 5'-UTR to polypyrimidine tract-binding protein (pPTB) in neuroblastoma cells but not in HeLa cells. These defects were absent in a neurovirulent virus with C at nucleotide 472. When C472U and an additional mutation, G482A, were introduced into the 5'-UTR, the resulting virus was more attenuated, had a replication and translation defect in both HeLa cells and neuroblastoma cells, and cross-linked poorly to pPTB from both cell types. A neurovirulent revertant of this virus (carrying U472C, G482A, and C529U) no longer had a replication defect in HeLa and SH-SY5Y cell lines and cross-linked with pPTB to wild-type levels. The results suggest that the attenuating effects of the mutation C472U may result from an impaired interaction of the 5'-UTR with pPTB in neural cells, which reduces viral translation and replication. Introduction of a second mutation, G482A, into the 5'-UTR extends this defect to HeLa cells.  相似文献   

5.
The poly(rC)-binding proteins (PCBP1 and PCBP2) are RNA-binding proteins whose RNA recognition motifs are composed of three K homology (KH) domains. These proteins are involved in both the stabilization and translational regulation of several cellular and viral RNAs. PCBP1 and PCBP2 specifically interact with both the 5'-element known as the cloverleaf structure and the large stem-loop IV RNA of the poliovirus 5'-untranslated region. We have found that the first KH domain of PCBP2 (KH1) specifically interacts with the viral RNAs, and together with viral protein 3CD, KH1 forms a high affinity ternary ribonucleoprotein complex with the cloverleaf RNA, resembling the full-length PCBP protein. Furthermore, KH1 acts as a dominant-negative mutant to inhibit translation from a poliovirus reporter gene in both Xenopus laevis oocytes and HeLa cell in vitro translation extracts.  相似文献   

6.
Viruses employ an alternative translation mechanism to exploit cellular resources at the expense of host mRNAs and to allow preferential translation. Plant RNA viruses often lack both a 5' cap and a 3' poly(A) tail in their genomic RNAs. Instead, cap-independent translation enhancer elements (CITEs) located in the 3' untranslated region (UTR) mediate their translation. Although eukaryotic translation initiation factors (eIFs) or ribosomes have been shown to bind to the 3'CITEs, our knowledge is still limited for the mechanism, especially for cellular factors. Here, we searched for cellular factors that stimulate the 3'CITE-mediated translation of Red clover necrotic mosaic virus (RCNMV) RNA1 using RNA aptamer-based one-step affinity chromatography, followed by mass spectrometry analysis. We identified the poly(A)-binding protein (PABP) as one of the key players in the 3'CITE-mediated translation of RCNMV RNA1. We found that PABP binds to an A-rich sequence (ARS) in the viral 3' UTR. The ARS is conserved among dianthoviruses. Mutagenesis and a tethering assay revealed that the PABP-ARS interaction stimulates 3'CITE-mediated translation of RCNMV RNA1. We also found that both the ARS and 3'CITE are important for the recruitment of the plant eIF4F and eIFiso4F factors to the 3' UTR and of the 40S ribosomal subunit to the viral mRNA. Our results suggest that dianthoviruses have evolved the ARS and 3'CITE as substitutes for the 3' poly(A) tail and the 5' cap of eukaryotic mRNAs for the efficient recruitment of eIFs, PABP, and ribosomes to the uncapped/nonpolyadenylated viral mRNA.  相似文献   

7.
During picornavirus infection, several cellular proteins are cleaved by virus-encoded proteinases. Such cleavage events are likely to be involved in the changing dynamics during the intracellular viral life cycle, from viral translation to host shutoff to RNA replication to virion assembly. For example, it has been proposed that there is an active switch from poliovirus translation to RNA replication mediated by changes in RNA-binding protein affinities. This switch could be a mechanism for controlling template selection for translation and negative-strand viral RNA synthesis, two processes that use the same positive-strand RNA as a template but proceed in opposing directions. The cellular protein poly(rC)-binding protein (PCBP) was identified as a primary candidate for regulating such a mechanism. Among the four different isoforms of PCBP in mammalian cells, PCBP2 is required for translation initiation on picornavirus genomes with type I internal ribosome entry site elements and also for RNA replication. Through its three K-homologous (KH) domains, PCPB2 forms functional protein-protein and RNA-protein complexes with components of the viral translation and replication machinery. We have found that the isoforms PCBP1 and -2 are cleaved during the mid-to-late phase of poliovirus infection. On the basis of in vitro cleavage assays, we determined that this cleavage event was mediated by the viral proteinases 3C/3CD. The primary cleavage occurs in the linker between the KH2 and KH3 domains, resulting in truncated PCBP2 lacking the KH3 domain. This cleaved protein, termed PCBP2-DeltaKH3, is unable to function in translation but maintains its activity in viral RNA replication. We propose that through the loss of the KH3 domain, and therefore loss of its ability to function in translation, PCBP2 can mediate the switch from viral translation to RNA replication.  相似文献   

8.
Do the poly(A) tail and 3' untranslated region control mRNA translation?   总被引:30,自引:0,他引:30  
R J Jackson  N Standart 《Cell》1990,62(1):15-24
  相似文献   

9.
Wang L  Jeng KS  Lai MM 《Journal of virology》2011,85(16):7954-7964
Sequences in the 5' untranslated region (5'UTR) of hepatitis C virus (HCV) RNA is important for modulating both translation and RNA replication. The translation of the HCV genome depends on an internal ribosome entry site (IRES) located within the 341-nucleotide 5'UTR, while RNA replication requires a smaller region. A question arises whether the replication and translation functions require different regions of the 5'UTR and different sets of RNA-binding proteins. Here, we showed that the 5'-most 157 nucleotides of HCV RNA is the minimum 5'UTR for RNA replication, and it partially overlaps with the IRES. Stem-loops 1 and 2 of the 5'UTR are essential for RNA replication, whereas stem-loop 1 is not required for translation. We also found that poly(C)-binding protein 2 (PCBP2) bound to the replication region of the 5'UTR and associated with detergent-resistant membrane fractions, which are the sites of the HCV replication complex. The knockdown of PCBP2 by short hairpin RNA decreased the amounts of HCV RNA and nonstructural proteins. Antibody-mediated blocking of PCBP2 reduced HCV RNA replication in vitro, indicating that PCBP2 is directly involved in HCV RNA replication. Furthermore, PCBP2 knockdown reduced IRES-dependent translation preferentially from a dual reporter plasmid, suggesting that PCBP2 also regulated IRES activity. These findings indicate that PCBP2 participates in both HCV RNA replication and translation. Moreover, PCBP2 interacts with HCV 5'- and 3'UTR RNA fragments to form an RNA-protein complex and induces the circularization of HCV RNA, as revealed by electron microscopy. This study thus demonstrates the mechanism of the participation of PCBP2 in HCV translation and replication and provides physical evidence for HCV RNA circularization through 5'- and 3'UTR interaction.  相似文献   

10.
Kempf BJ  Barton DJ 《Journal of virology》2008,82(12):5835-5846
Poliovirus (PV) mRNA is unusual because it possesses a 5'-terminal monophosphate rather than a 5'-terminal cap. Uncapped mRNAs are typically degraded by the 5' exonuclease XRN1. A 5'-terminal cloverleaf RNA structure interacts with poly(rC) binding proteins (PCBPs) to protect uncapped PV mRNA from 5' exonuclease (K. E. Murray, A. W. Roberts, and D. J. Barton, RNA 7:1126-1141, 2001). In this study, we examined de novo polysome formation using HeLa cell-free translation-replication reactions. PV mRNA formed polysomes coordinate with the time needed for ribosomes to traverse the viral open reading frame (ORF). Nascent PV polypeptides cofractionated with viral polysomes, while mature PV proteins were released from the polysomes. Alterations in the size of the PV ORF correlated with alterations in the size of polysomes with ribosomes present every 250 to 500 nucleotides of the ORF. Eukaryotic initiation factor 4GI (eIF4GI) was cleaved rapidly as viral polysomes assembled and the COOH-terminal portion of eIF4GI cofractionated with viral polysomes. Poly(A) binding protein, along with PCBP 1 and 2, also cofractionated with viral polysomes. A C24A mutation that inhibits PCBP-5'-terminal cloverleaf RNA interactions inhibited the formation and stability of nascent PV polysomes. Kinetic analyses indicated that the PCBP-5' cloverleaf RNA interaction was necessary to protect PV mRNA from 5' exonuclease immediately as ribosomes initially traversed the viral ORF, before viral proteins could alter translation factors within nascent polysomes or contribute to ribonucleoprotein complexes at the termini of the viral mRNA.  相似文献   

11.
We showed previously that a human rhinovirus 14 (HRV14) 3' untranslated region (3' UTR) on a poliovirus genome was able to replicate with nearly wild-type kinetics (J. B. Rohll, D. H. Moon, D. J. Evans, and J. W. Almond, J. Virol 69:7835-7844, 1995). This enabled the HRV14 single 3' UTR stem-loop structure to be studied in combination with a sensitive reporter system, poliovirus FLC/REP, in which the capsid coding region is replaced by an in-frame chloramphemicol acetyltransferase (CAT) gene. Using such a construct, we identified a mutant (designated mut4), in which the structure and stability of the stem were predicted to be maintained, that replicated very poorly as determined by its level of CAT activity. The effect of this mutant 3' UTR on replication has been further investigated by transferring it onto the full-length cDNAs of both poliovirus type 3 (PV3) and HRV14. Virus was recovered with a parental plaque phenotype at a low frequency, indicating the acquisition of compensating changes, which sequence analysis revealed were, in both poliovirus- and rhinovirus-derived viruses, located in the active-site cleft of 3D polymerase and involved the substitution of Asn18 for Tyr. These results provide further evidence of a specific interaction between the 3' UTR of picornaviruses and the viral polymerase and also indicate similar interactions of the 3' UTR of rhinovirus with both poliovirus and rhinovirus polymerases.  相似文献   

12.
The terminal half of the 5' untranslated region (UTR) in the (+)-strand RNA genome of tomato bushy stunt virus was analyzed for possible roles in viral RNA replication. Computer-aided thermodynamic analysis of secondary structure, phylogenetic comparisons for base-pair covariation, and chemical and enzymatic solution structure probing were used to analyze the 78 nucleotide long 5'-terminal sequence. The results indicate that this sequence adopts a branched secondary structure containing a three-helix junction core. The T-shaped domain (TSD) formed by this terminal sequence is closed by a prominent ten base-pair long helix, termed stem 1 (S1). Deletion of either the 5' or 3' segment forming S1 (coordinates 1-10 or 69-78, respectively) in a model subviral RNA replicon, i.e. a prototypical defective interfering (DI) RNA, reduced in vivo accumulation levels of this molecule approximately 20-fold. Compensatory-type mutational analysis of S1 within this replicon revealed a strong correlation between formation of the predicted S1 structure and efficient DI RNA accumulation. RNA decay studies in vivo did not reveal any notable changes in the physical stabilities of DI RNAs containing disrupted S1s, thus implicating RNA replication as the affected process. Further investigation revealed that destabilization of S1 in the (+)-strand was significantly more detrimental to DI RNA accumulation than (-)-strand destabilization, therefore S1-mediated activity likely functions primarily via the (+)-strand. The essential role of S1 in DI RNA accumulation prompted us to examine the 5'-proximal secondary structure of a previously identified mutant DI RNA, RNA B, that lacks the 5' UTR but is still capable of low levels of replication. Mutational analysis of a predicted S1-like element present within a cryptic 5'-terminal TSD confirmed the importance of the former in RNA B accumulation. Collectively, these data support a fundamental role for the TSD, and in particular its S1 subelement, in tombusvirus RNA replication.  相似文献   

13.
The cellular protein, poly(rC) binding protein 2 (PCBP2), is known to function in picornavirus cap-independent translation. We have further examined the RNA binding properties and protein-protein interactions of PCBP2 necessary for translation. We have studied its putative multimerization properties utilizing the yeast two-hybrid assay and in vitro biochemical methods, including glutathione S-transferase (GST) pull-down assays and gel filtration. Through genetic analysis, the multimerization domain has been localized to the second K-homologous (KH) RNA binding domain of the protein between amino acids 125 and 158. To examine the function of multimerization in poliovirus translation, we utilized the truncated protein, DeltaKH1-PCBP2, which is capable of multimer formation, but does not bind poliovirus stem-loop IV RNA (an interaction required for translation). Utilizing RNA binding and in vitro translation assays, this protein was shown to act as a dominant negative, suggesting that PCBP2 multimerization functions in poliovirus translation and RNA binding. Additionally, PCBP2 containing a deletion in the multimerization domain (DeltaKH2-PCBP2) was not able to bind poliovirus stem-loop IV RNA and could not rescue translation in extracts that were depleted of endogenous PCBP2. Results from these experiments suggest that the multimerization of PCBP2 is required for efficient RNA binding and cap-independent translation of poliovirus RNA. By examining the functional interactions of the cellular protein PCBP2, we have discovered a novel determinant in the mechanism of picornavirus cap-independent translation.  相似文献   

14.
V S Sriskanda  G Pruss  X Ge    V B Vance 《Journal of virology》1996,70(8):5266-5271
Gel retardation and UV-cross-linking techniques were used to demonstrate that two tobacco proteins, with approximate molecular masses of 28 and 32 kDa, bind to a site within the 3' region of potato virus X (PVX) genomic RNA. The protein binding is specific, in that a 50-fold excess of unlabeled probe prevents formation of the complexes but no reduction is observed with a 2,000-fold molar excess of yeast tRNA. Complex formation is inhibited by poly(U) but is relatively unaffected by poly(A), poly(G), or poly(C-I). PVX RNA-host protein complex formation occurs in vitro at salt concentrations up to 400 mM. Deletion mapping indicates that the proteins bind within the 3' untranslated region (UTR) of PVX genomic RNA and that an 8-nucleotide U-rich sequence (5'-UAUUUUCU) is required for the binding. Deletion of the 8-nucleotide U-rich region from the 3' UTR of a sensitive PVX reporter virus that carries the luciferase gene in place of the PVX coat protein gene results in a more than 70,000-fold reduction in luciferase expression in tobacco protoplasts. RNA probes carrying the sequence GCGC in place of the central four contiguous uridines of the 8-nucleotide U-rich motif fail to bind host protein at detectable levels, and the same mutation, when introduced into the PVX reporter virus, eliminates viral multiplication. Mutations of 1 or 2 nucleotides within the same four uridines reduced both binding of host proteins and replication of reporter virus. These results indicate that the 8-nucleotide U-rich motif within the PVX 3' UTR is important for some aspect of viral multiplication and suggest that host protein binding plays a role in the process.  相似文献   

15.
Na H  Fabian MR  White KA 《RNA (New York, N.Y.)》2006,12(12):2199-2210
The 3' untranslated regions (UTRs) of positive-strand RNA viruses often form complex structures that facilitate various viral processes. We have examined the RNA conformation of the 352 nucleotide (nt) long 3' UTR of the Tomato bushy stunt virus (TBSV) genome with the goal of defining both local and global structures that are important for virus viability. Gel mobility analyses of a 3'-terminal 81 nt segment of the 3' UTR revealed that it is able to form a compact RNA domain (or closed conformation) that is stabilized by a previously proposed tertiary interaction. RNA-RNA gel shift assays were used to provide the first physical evidence for the formation of this tertiary interaction and revealed that it represents the dominant or "default" structure in the TBSV genome. Further analysis showed that the tertiary interaction involves five base pairs, each of which contributes differently to overall complex stability. Just upstream from the 3'-terminal domain, a long-distance RNA-RNA interaction involving 3' UTR sequences was found to be required for efficient viral RNA accumulation in vivo and to also contribute to the formation of the 3'-terminal domain in vitro. Collectively, these results provide a comprehensive overview of the conformational and functional organization of the 3' UTR of the TBSV genome.  相似文献   

16.
17.
18.
Within the conserved 5' untranslated region (UTR) of the pestivirus genome three highly variable regions were identified. Preceding the polyprotein start codon, multiple cryptic AUG codons and several small open reading frames are characteristic for all the five pestiviruses. Inspection of the context of AUGs revealed that the polyprotein initiation AUG of pestivirus has a weak context for efficient translation initiation. The most favorable context was found in two of the cryptic AUGs. Two oligopyrimidine-rich tracts upstream to the conserved either cryptic or authentic AUG in the 5'-UTR of pestivirus were identified and 83.3% of their nucleotide sequences are complementary to the consensus sequence at the 3' terminus of eucaryotic 18S rRNA. A secondary structure model for the 5'-UTR of pestivirus was predicted. Nucleotide sequence comparison among five pestiviruses led to the identification of a variable region and a conserved region in the 3'-UTR. A deletion of 41 nucleotides was found within the variable region in Osloss. A secondary structure model for the 3'-UTR was also predicted. The structural similarity of the 5'-UTR between pestiviruses and picornaviruses and hepatitis C viruses was demonstrated and the possible implications of features of the 5' and 3'-UTR of pestiviruses are discussed.  相似文献   

19.
20.
The human poly(rC)-binding protein (PCBP) 2 is known to interact with enteroviral RNA. Here, the interaction of PCBP2 with RNA target sequences at the 5′ end of the coxsackievirus B3 genome was investigated. Using the electrophoretic mobility shift assay and the yeast three-hybrid system, a short oligo(rC) tract connecting cloverleaf and IRES is demonstrated to contribute to PCBP2 binding. This oligo(rC) tract is conserved among entero- and rhinoviruses. In absence of the viral 3C proteinase, an extended cloverleaf RNA (nt 1-105) containing the oligo(rC) tract interacts with PCBP2 whereas the cloverleaf (nt 1-87) lacking the oligo(rC) tract does not. In the presence of 3C proteinase, cloverleaf RNA (1-87) interacts with PCBP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号