首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy has been shown to contribute to defense against intracellular bacteria and parasites. In comparison, the ability of such pathogens to manipulate host cell autophagy to their advantage has not been examined. Here we present evidence that infection by Toxoplasma gondii, an intracellular protozoan parasite, induces host cell autophagy in both HeLa cells and primary fibroblasts, via a mechanism dependent on host Atg5 but independent of host mammalian target of rapamycin suppression. Infection led to the conversion of LC3 to the autophagosome-associated form LC3-II, to the accumulation of LC3-containing vesicles near the parasitophorous vacuole, and to the relocalization toward the vacuole of structures labeled by the phosphatidylinositol 3-phosphate indicator YFP-2×FYVE. The autophagy regulator beclin 1 was concentrated in the vicinity of the parasitophorous vacuole in infected cells. Inhibitor studies indicated that parasite-induced autophagy is dependent on calcium signaling and on abscisic acid. At physiologically relevant amino acid levels, parasite growth became defective in Atg5-deficient cells, indicating a role for host cell autophagy in parasite recovery of host cell nutrients. A flow cytometric analysis of cell size as a function of parasite content revealed that autophagy-dependent parasite growth correlates with autophagy-dependent consumption of host cell mass that is dependent on parasite progression. These findings indicate a new role for autophagy as a pathway by which parasites may effectively compete with the host cell for limiting anabolic resources.Macroautophagy (hereafter referred to as autophagy) is a major catabolic process in which cytosolic constituents are sequestered within double-membraned vesicles (autophagosomes) and subsequently delivered to lysosomes for degradation. Current evidence indicates at least two distinct functions for this process. On the one hand, autophagy can be up-regulated under nutrient-limiting conditions to increase nutrient supply via recycling of the products of autophagic degradation, which may be exported from the lysosome (1). The up-regulation of autophagy upon starvation is thought to be mediated by the suppression of signaling through the mTOR pathway (2). On the other hand, autophagy can serve to maintain cellular homeostasis by facilitating the removal of damaged or deleterious elements, such as misfolded protein aggregates (3). An important example of the latter function is the role of autophagy in restricting the growth of intracellular pathogens, including both free bacteria that have escaped into host cytosol, such as group A Streptococcus, and pathogens, such as Mycobacterium tuberculosis, that reside in parasitophorous vacuoles in macrophages (4, 5). In macrophages infected with Toxoplasma gondii, fusion of the parasitophorous vacuole with lysosomes can be induced in an autophagy-dependent manner when host cell anti-parasitic function is activated via CD40 (6). Autophagy as a component of host defense may be up-regulated by inflammatory agents such as lipopolysaccharide (7) and interferon-γ (8).Although the clearance function of autophagy may enhance pathogen killing in host cells that have been activated to generate antimicrobial or antiparasitic function, in permissive host cells, in which the pathogen is less susceptible to sequestration by the autophagosome, autophagy may conceivably play a quite different role. Modulation of the balance between anabolic and catabolic processes may affect the outcome of competition between pathogen and host cell for limiting nutrients. In particular, the nutritive function of autophagy could favor pathogen expansion by providing greater access to host cell biomass. The intracellular apicomplexan parasite, T. gondii, is a suitable agent for the investigation of this hypothesis, because it has been shown to be highly dependent on its host cell for the supply of several nutrients, including amino acids (9), lipids (10), and purines (11). T. gondii replicates within a parasitophorous vacuole that, in permissive host cells, is protected from lysosomal fusion. Recent evidence indicates that in such permissive cells, in which the parasite can differentiate into bradyzoites associated with chronic infection, the pathogen is able to actively sequester host cell lysosome-derived vesicles, thereby potentially gaining access to their contents (12).The ability of intracellular parasites to regulate host cell autophagy has been little examined, and there is also little information with respect to the impact of these pathogens on host cell signals that potentially affect the autophagic pathway. In addition to mTOR, these include calcium ions, which have been implicated in autophagy induced by endoplasmic reticulum stress (13). In this study, we provide evidence that T. gondii induces host cell autophagy by a mechanism dependent on calcium but independent of mTOR and that it exploits the nutritive function of host autophagy to enhance its proliferation.  相似文献   

2.
SYNOPSIS. The feasibility of using a macrophage-like murine tumor cell as a host for Leishmania donovani was investigated. This cell line, designated P388D1, rapidly phagocytized amastigotes and supported their intracellular replication. It can serve as a model "host" without the inherent limitations of primary macrophage cultures.  相似文献   

3.
Toxoplasma gondii is an obligate intracellular protozoan parasite that invades and replicates within most nucleated cells of warm-blooded animals. The basis for this wide host cell tropism is unknown but could be because parasites invade host cells using distinct pathways and/or repertoires of host factors. Using synchronized parasite invasion assays, we found that host microtubule disruption significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are specifically associated with the moving junction, which is the site of contact between the host cell and the invading parasite. Host microtubules are specifically associated with the moving junction of those parasites invading early after stimulating invasion but not with those invading later. Disruption of host microtubules has no effect on parasite contact, attachment, motility, or rate of penetration. Rather, host microtubules hasten the time before parasites commence invasion. This effect on parasite invasion is distinct from the role that host microtubules play in bacterial and viral infections, where they function to traffic the pathogen or pathogen-derived material from the host cell''s periphery to its interior. These data indicate that the host microtubule cytoskeleton is a structure used by Toxoplasma to rapidly infect its host cell and highlight a novel function for host microtubules in microbial pathogenesis.Toxoplasma gondii is an obligate intracellular protozoan parasite that is capable of causing disease in fetuses and immunocompromised individuals (23). The parasite infects a wide range of nucleated cells of most warm-blooded animals. The mechanisms underlying this wide tropism are not known but could be due to either the parasite infecting cells using a ubiquitously expressed host receptor and associated machinery, inserting its own receptor into the host cell''s plasma membrane, or using multiple host cell receptors/machinery (5).Toxoplasma invasion is a multistep, complex process consisting of parasite contact to host cells, intimate attachment, parasite motility, and then penetration (5). Host cell contact is a loose, low-affinity interaction that is mediated by parasite surface antigens. An unknown signal then triggers the release of proteins from a specialized secretory organelle called micronemes whose contents include proteins that function as adhesins. This is then followed by parasite gliding motility on the host cell surface. At some point, proteins from a second secretory organelle, named rhoptries, are exocytosed. Among these rhoptry proteins, several (RON2, RON4, RON5, and RON8) are part of a preformed complex that binds the previously secreted AMA1 microneme protein (1, 2, 20, 33). Together, these proteins form the moving junction complex, which defines the parasite entry site on the host cell plasma membrane. Parasite penetration occurs by the parasite propelling itself forward, via acto-myosin-dependent motility, into the host plasma membrane (35). This causes an invagination of the plasma membrane resulting in the formation of the parasitophorous vacuole (PV), which is the compartment that the parasite resides in throughout its time in the host cell. However, host plasma membrane-associated proteins are selectively incorporated into the developing PV such that glycosylphosphatidylinositol (GPI)-linked proteins are included, while single-pass transmembrane proteins are excluded (7, 24).In contrast to parasite molecules that function during invasion, few host cell components involved in this process are known. A notable exception is the finding that host Arp2/3-dependent actin polymerization promotes Toxoplasma invasion (11). Nevertheless, how actin or other host molecules function during invasion remains to be determined. The host microtubule cytoskeleton has been widely studied for its role during receptor-mediated endocytosis, as well as in bacterial and viral infections, where microtubules act to facilitate cargo transport from the host cell periphery to the interior (8, 15, 27, 29, 40). Consistent with this role in cargo transport, host microtubules also promote trafficking of rhoptry proteins secreted into the host cell (12). However, whether this host cell structure functions during parasite invasion per se is unknown.Here, we tested the hypothesis that host microtubules are used by Toxoplasma tachyzoites to penetrate into its host cell. Using synchronized parasite invasion assays, we find that disruption of host microtubules significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are localized to the moving junction but, unlike their previously described role in pathogen invasion, host microtubules promote tachyzoite invasion by hastening the time that parasites initiate invasion.  相似文献   

4.
Summary Pit connections (PCs) develop between the parasitic red algaHolmsella and its hostGracilaria. Only parasite cells initiate the formation of host-parasite pit connections. The parasite produces a small connecting cell (termed the conjunctor cell) which moves through the cell wall to fuse with either an adjacent host or parasite cell. The parasite secondary PC, which forms between the conjunctor cell and the parasite cell, is structurally different from a parasite primary PC, and has the distinct structure of a host-parasite PC. Only if the conjunctor cell fuses with another parasite cell will the former parasite-conjunctor cell PC be altered to a typical parasite-parasite PC. If the conjunctor cell fuses with an adjacent host cell the PC continues to develop as host-parasite. Occasionally a conjunctor cell fails to fuse with an adjacent cell (whether host or parasite), and the conjunctor cell and PC eventually breakdown in the cell wall. The parasite overcomes several barriers in order to infect the host, including the formation of host-parasite PCs which appear to be a necessary component of the parasiticHolmsella-Gracilaria association.  相似文献   

5.
Parasitic interaction of Bdellovibrio bacteriovorus with other bacteria   总被引:20,自引:14,他引:6  
Starr, Mortimer P. (University of California, Davis), and Nancy L. Baigent. Parasitic interaction of Bdellovibrio bacteriovorus with other bacteria. J. Bacteriol. 91:2006-2017. 1966.-The interactions of the predatory parasite, Bdellovibrio bacteriovorus, with Erwinia amylovora, Pseudomonas tabaci, and P. phaseolicola were examined by means of phase-contrast and electron microscopy. Attachment of the bdellovibrio to the host cell is apparently initially reversible; detachment occurs infrequently in the later stages. Formation of a pore in the host cell wall is followed by disorganization of the host nucleus and of the murein layer of the host cell wall. Short host cells become totally spheroplasted; the longer rods of Pseudomonas usually are partially spheroplasted. The parasite completely invades the host cell, and the cell contents of the host are digested. Bdellovibrios living as parasites inside the host increase considerably in size in comparison with those which have been living away from the host for a time. When the host protoplast is entirely lysed, the parasites leave the disintegrating "ghosted" cell envelope, and are ready to reinitiate the parasitic cycle. The time taken for a mature Bdellovibrio cell to complete the parasitic cycle may vary depending on the length of time the parasite has been away from its hosts.  相似文献   

6.
Modulation of host cell signaling and cellular functions is key to intracellular survival of pathogenic bacteria. Intracellular growth has several advantages e.g. escape from the humoral immune response and access to a stable nutrient rich environment. Growth in such a preferred niche comes at the price of an ongoing competition between the bacteria and the host as well as other microbes that compete for the very same host resources. This requires specialization and constant evolution of dedicated systems for adhesion, invasion and accommodation. Interestingly, obligate intracellular bacteria of the order Chlamydiales have evolved an impressive degree of control over several important host cell functions. In this review we summarize how Chlamydia controls its host cell with a special focus on signal transduction and cellular modulation.  相似文献   

7.
Cytopathogenesis and inhibition of host gene expression by RNA viruses.   总被引:1,自引:0,他引:1  
Many viruses interfere with host cell function in ways that are harmful or pathological. This often results in changes in cell morphology referred to as cytopathic effects. However, pathogenesis of virus infections also involves inhibition of host cell gene expression. Thus the term "cytopathogenesis," or pathogenesis at the cellular level, is meant to be broader than the term "cytopathic effects" and includes other cellular changes that contribute to viral pathogenesis in addition to those changes that are visible at the microscopic level. The goal of this review is to place recent work on the inhibition of host gene expression by RNA viruses in the context of the pathogenesis of virus infections. Three different RNA virus families, picornaviruses, influenza viruses, and rhabdoviruses, are used to illustrate common principles involved in cytopathogenesis. These examples were chosen because viral gene products responsible for inhibiting host gene expression have been identified, as have some of the molecular targets of the host. The argument is made that the role of the virus-induced inhibition of host gene expression is to inhibit the host antiviral response, such as the response to double-stranded RNA. Viral cytopathogenesis is presented as a balance between the host antiviral response and the ability of viruses to inhibit that response through the overall inhibition of host gene expression. This balance is a major determinant of viral tissue tropism in infections of intact animals.  相似文献   

8.
To correlate treatment responses with numbers and types of "host cell infiltrates," lymphoid tissues from 10 patients with low-grade B cell malignancies were stained before, during, and after anti-idiotype therapy with a panel of monoclonal antibodies applied to frozen sections. Tissue penetration by the anti-idiotype antibodies was confirmed in five patients by these immunoperoxidase methods. Large numbers of phenotypic T helper cells were the main component of the "host infiltrate" in most patients. Two patients showed a complete and a near-complete clinical remission, four others had partial responses, and four did not respond to therapy. The two patients that developed clinical remission demonstrated the largest number of T cells, T helper cells, TAC+ cells, Leu-7+ cells, and in general the smallest number of proliferating cells as measured by the Ki-67 antibody. Other major differences in host cells were not evident among the patients. These preliminary data suggest that the type and amount of "host infiltrate" in low-grade B cell lymphomas may predict which patients will respond to anti-idiotype therapy.  相似文献   

9.
The amount of recombinant product obtained from mammalian cells grown in a bioreactor is in part limited by achievable cell densities and the ability of cells to remain viable over extended periods of time. In an attempt to generate cell lines capable of better bioreactor performance, we subjected the DG44 Chinese Hamster Ovary (CHO) host cell line and a recombinant production cell line to an iterative process whereby cells capable of surviving the harsh conditions in the bioreactor were selected. This selective process was termed "bioreactor evolution". Following the selective process, the "evolved" host cells attained a 2-fold increase in peak cell density and a 72% increase in integral cell area. Transient transfection experiments demonstrate that the evolved cells have the same transfection efficiency and the same secretory potential as the initial cells. The "evolved" host was also found to contain a large subpopulation of cells that did not require insulin for growth. From this, a new population of growth-factor-independent cells was obtained. These improvements in host properties should prove beneficial in the expression of recombinant proteins in fed-batch processes. The selective process was also applied to a recombinant production cell line. The evolved cells from this selection exhibited a 38% increase in peak cell density, a 30% increase in integral cell area, and a 36% increase in product titer. These increases were obtained without any appreciable impact on product quality, demonstrating the usefulness of this simple approach to improve the performance of recombinant cell lines.  相似文献   

10.
Hijacking of eukaryotic functions by intracellular bacterial pathogens.   总被引:4,自引:0,他引:4  
Intracellular bacterial pathogens have evolved as a group of microorganisms endowed with weapons to hijack many biological processes of eukaryotic cells. This review discusses how these pathogens perturb diverse host cell functions, such as cytoskeleton dynamics and organelle vesicular trafficking. Alteration of the cytoskeleton is discussed in the context of the bacterial entry process (invasion), which occurs either by activation of membrane-located host receptors ("zipper" mechanism) or by injection of bacterial proteins into the host cell cytosol ("trigger" mechanism). In addition, the two major types of intracellular lifestyles, cytosolic versus intravacuolar (phagosomal), which are the consequence of alterations in the phagosome-lysosome maturation route, are compared. Specific examples illustrating known mechanisms of mimicry or hijacking of the host target are provided. Finally, recent advances in phagosome proteomics and genome expression in intracellular bacteria are described. These new technologies are yielding valuable clues as to how these specialized bacterial pathogens manipulate the mammalian host cell.  相似文献   

11.
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system (T3SS) to directly translocate effector proteins into host cells where they play a pivotal role in subverting host cell signaling needed for disease. However, our knowledge of how EPEC affects host protein phosphorylation is limited to a few individual protein studies. We employed a quantitative proteomics approach to globally map alterations in the host phosphoproteome during EPEC infection. By characterizing host phosphorylation events at various time points throughout infection, we examined how EPEC dynamically impacts the host phosphoproteome over time. This experimental setup also enabled identification of T3SS-dependent and -independent changes in host phosphorylation. Specifically, T3SS-regulated events affected various cellular processes that are known EPEC targets, including cytoskeletal organization, immune signaling, and intracellular trafficking. However, the involvement of phosphorylation in these events has thus far been poorly studied. We confirmed the MAPK family as an established key host player, showed its central role in signal transduction during EPEC infection, and extended the repertoire of known signaling hubs with previously unrecognized proteins, including TPD52, CIN85, EPHA2, and HSP27. We identified altered phosphorylation of known EPEC targets, such as cofilin, where the involvement of phosphorylation has so far been undefined, thus providing novel mechanistic insights into the roles of these proteins in EPEC infection. An overlap of regulated proteins, especially those that are cytoskeleton-associated, was observed when compared with the phosphoproteome of Shigella-infected cells. We determined the biological relevance of the phosphorylation of a novel protein in EPEC pathogenesis, septin-9 (SEPT9). Both siRNA knockdown and a phosphorylation-impaired SEPT9 mutant decreased bacterial adherence and EPEC-mediated cell death. In contrast, a phosphorylation-mimicking SEPT9 mutant rescued these effects. Collectively, this study provides the first global analysis of phosphorylation-mediated processes during infection with an extracellular, diarrheagenic bacterial pathogen.Diarrheagenic E. coli are a major global health burden and cause much morbidity and mortality worldwide. Enteropathogenic E. coli (EPEC)1 is the causative agent of potentially fatal infantile diarrhea and remains an endemic health threat for children in developing countries. EPEC and the closely related enterohemorrhagic E. coli (EHEC) belong to the group of attaching and effacing (A/E) pathogens that form distinct A/E lesions on the surface of intestinal epithelial cells causing the loss of the characteristic intestinal brush border architecture (1).Upon attachment to intestinal cells, EPEC uses a syringe-like molecular apparatus, the type III secretion system (T3SS), to inject at least 25 unique bacterial effector proteins into the host cell (24). Once translocated into mammalian cells, these effectors manipulate a wide range of host signaling pathways, thereby subverting host cell function and promoting virulence (5). The bacterial translocated intimin receptor (Tir) is one of the first and most abundant effectors injected into the host cell: it mediates intimate attachment of EPEC to the enterocyte apical surface via its interaction with the bacterial surface adhesin intimin (6, 7). In concert with other effectors, Tir also provokes an expansive cytoskeletal rearrangement leading to the formation of actin-rich protrusions, termed pedestals, beneath the site of bacterial attachment (8). Besides altering the host cell cytoskeleton, EPEC effectors also manipulate cellular trafficking, host immune response and ion and water homeostasis to cause disease (5). Although significant effort in recent years has led to the identification of multiple key players in both the host and the pathogen, the complex interactions between EPEC and the epithelial host cell, and the underlying molecular mechanisms, are still collectively not well understood.There is increasing evidence that hijacking host post-translational mechanisms such as protein phosphorylation is a key strategy for bacterial pathogens to efficiently subvert host cell function (9) and there are several indications that this may be the case for EPEC. For example, Tir is phosphorylated upon insertion into the host cell membrane and this event plays a role in the rearrangement of the actin cytoskeleton (10). Another EPEC-encoded effector, NleH, contains a functional kinase domain suggesting the potential of directly phosphorylating host cell targets (11). Moreover, the phosphorylation profiles of a few specific host proteins such as cortactin, CT10 regulator of kinase (CRK) adaptors, focal adhesion kinase (FAK) and mitogen-activated protein kinase 1 (MAPK1), as well as alterations in tyrosine phosphorylation of host proteins, are impacted in an EPEC effector-dependent manner (1218). These are selective observations though. Thus, a more comprehensive, system-level analysis is needed to better understand how and to what extent EPEC hijacks host cell phosphorylation to cause disease.Recent advances in quantitative phosphoproteomics have made it possible to successfully profile the changes in host protein phosphorylation following infection by the invasive, diarrheagenic bacterial pathogens Shigella and Salmonella (1921). To our knowledge, no such analysis has been reported for a noninvasive, diarrheagenic bacterial pathogen such as EPEC. In this study, we applied a stable isotope labeling by amino acids in cell culture (SILAC)-based (22) quantitative phosphoproteomics approach to assess the impact of EPEC infection on the host cell phosphoproteome. The integration of time course experiments and the use of an EPEC mutant deficient in type III secretion (T3S) provided further insights into the dynamics as well as the effector dependence of these processes. This experimental approach enabled identification of both stable and transient interactions between EPEC bacterial effectors and host proteins. Additional infection studies focusing on a newly identified host target, septin-9, further emphasizes the biological significance of the manipulation of host protein phosphorylation in EPEC pathogenesis.  相似文献   

12.
Donor T cell transfusion, which is a long-standing approach to prevent allograft rejection, operates indirectly by alteration of host T cell immunity. We therefore hypothesized that adoptive transfer of immune regulatory host Th2 cells would represent a novel intervention to enhance cardiac allograft survival. Using a well-described rat cardiac transplant model, we first developed a method for ex vivo manufacture of rat host-type Th2 cells in rapamycin, with subsequent injection of such Th2.R cells prior to class I and class II disparate cardiac allografting. Second, we determined whether Th2.R cell transfer polarized host immunity towards a Th2 phenotype. And third, we evaluated whether Th2.R cell therapy prolonged allograft viability when used alone or in combination with a short-course of cyclosporine (CSA) therapy. We found that host-type Th2.R cell therapy prior to cardiac allografting: (1) reduced the frequency of activated T cells in secondary lymphoid organs; (2) shifted post-transplant cytokines towards a Th2 phenotype; and (3) prolonged allograft viability when used in combination with short-course CSA therapy. These results provide further support for the rationale to use "direct" host T cell therapy for prolongation of allograft viability as an alternative to "indirect" therapy mediated by donor T cell infusion.  相似文献   

13.
Key surface proteins of pathogens and their toxins bind to the host cell receptors in a manner that is quite different from the way the natural ligands bind to the same receptors and direct normal cellular responses. Here we describe a novel strategy for "non-antibody-based" pathogen countermeasure by targeting the very same "alternative mode of host receptor binding" that the pathogen proteins exploit to cause infection and disease. We have chosen the Staphylococcus enterotoxin B (SEB) superantigen as a model pathogen protein to illustrate the principle and application of our strategy. SEB bypasses the normal route of antigen processing by binding as an intact protein to the complex formed by the MHC class II receptor on the antigen-presenting cell and the T cell receptor. This alternative mode of binding causes massive IL-2 release and T cell proliferation. A normally processed antigen requires all the domains of the receptor complex for its binding, whereas SEB requires only the alpha1 subunit (DRalpha) of the MHC class II receptor and the variable beta subunit (TCRVbeta) of the T cell receptor. This prompted us to design a bispecific chimera, DRalpha-linker-TCRVbeta, that acts as a receptor mimic and prevents the interaction of SEB with its host cell receptors. We have adopted (GSTAPPA)(2) as the linker sequence because it supports synergistic binding of DRalpha and TCRVbeta to SEB and thereby makes DRalpha-(GSTAPPA)(2)-TCRVbeta as effective an SEB binder as the native MHC class II-T cell receptor complex. Finally, we show that DRalpha-(GSTAPPA)(2)-TCRVbeta inhibits SEB-induced IL-2 release and T cell proliferation at nanomolar concentrations.  相似文献   

14.
军团菌以吞噬泡的形式进入宿主细胞,借助宿主细胞环境进行自身的繁殖传代。为避免被宿主识别,通过分泌自身效应蛋白来逃避宿主对含病原菌液泡(legionella containing vacuoles,LCVs)的识别和消化,军团菌通过分泌效应蛋白SidK结合宿主v-ATPase,抑制v-ATPase对吞噬泡的酸化,以实现吞噬泡不被溶酶体消化。在大肠杆菌中表达了效应蛋白SidK,利用昆虫细胞表达了VatA(v-ATPase)蛋白,得到了均一性较好的SidK-VatA蛋白复合体,为进一步解析这个复合体的结构奠定了基础。  相似文献   

15.
SYNOPSIS. The conclusion drawn in 1921 that the large nuclei in the cytoplasmic cortex of Glugea cysts are not vegetative nuclei of the microsporidan but nuclei of the hypertrophied host cell was based on the discovery of early developmental stages in the mesenchyme of stickleback larvae experimentally fed Glugea spores. This observation had been made on serial sections from experiments done in 1912. The intracellular development of the microsporidan could be followed up in this material only thru the 1st stages of schizogony. Renewed infection experiments, done still in 1921 on a much broader basis, have fully confirmed the previous findings, as briefly stated in 1922. On this material, the intracellular development of G. anomala has been followed up in recent years from uninucleate host cells 7 μ in diameter, interpreted as wandering cells in the mesenchyme, until they became macroscopic multinucleate cysts, in which schizogony and sporogony of the microsporidan produced innumerable vegetative stages and spores of Glugea. The details of the developmental processes are described in the present paper.
The multinucleate host cell and the intracellular parasites together form one of the symbiotic complexes for which the term "xenom" or "xenoma" has been used by me since 1949. By a sequence of amitotic nuclear divisions, the uninucleate host cell in the Glugea xenomas of Gasterosteus becomes plurinucleate in contrast to the usual structure of other xenomas of fish.
Already in 1921, I thought that the host cell in the Glugea xenomas may have phagocytic properties. The observation of accumulation of granules from pigment cells in some of the Glugea xenomas has now verified this supposition.  相似文献   

16.
Autophagy involves lysosomal-mediated degradation of cellular components and contributes to host immunity. Some pathogens avoid autophagy-mediated killing, while others exploit it to acquire host cell nutrients. Starr et?al. reveal that the intracellular bacterial pathogen Brucella abortus can "hitch a ride" with autophagy, subverting autophagy machinery to spread from cell to cell (Starr et?al., 2012).  相似文献   

17.
Infection by the bacterium Listeria monocytogenes depends on host cell clathrin. To determine whether this requirement is widespread, we analyzed infection models using diverse bacteria. We demonstrated that bacteria that enter cells following binding to cellular receptors (termed "zippering" bacteria) invade in a clathrin-dependent manner. In contrast, bacteria that inject effector proteins into host cells in order to gain entry (termed "triggering" bacteria) invade in a clathrin-independent manner. Strikingly, enteropathogenic Escherichia coli (EPEC) required clathrin to form actin-rich pedestals in host cells beneath adhering bacteria, even though this pathogen remains extracellular. Furthermore, clathrin accumulation preceded the actin rearrangements necessary for Listeria entry. These data provide evidence for a clathrin-based entry pathway allowing internalization of large objects (bacteria and ligand-coated beads) and used by "zippering" bacteria as part of a general mechanism to invade host mammalian cells. We also revealed a nonendocytic role for clathrin required for extracellular EPEC infections.  相似文献   

18.
The obligate intracellular protozoan Toxoplasma gondii establishes its replication permissive niche within the infected host cell. This niche, the parasitophorous vacuole (PV), is delimited from the host cell cytoplasm by the PV membrane (PVM). In this chapter we highlight the roles of the PVM in the remodeling of host cell architecture, nutrient acquisition, the manipulation of signaling, and touch upon the potential roles in the parasite developmental cycle. We further present the PVM as a unique and dynamic "organelle" found only within the infected cell where it is established outside the parent organism. Despite its importance little is known about the biology of the PVM. There has, however, been a recent renewal of interest in the PVM, the study of which has become more tractable with the application of both classical approaches as well as genomic and proteomic analyses. In this review we discuss the diverse activities associated with the PVM and present pressing questions that remain to be elucidated regarding this enigmatic organelle.  相似文献   

19.

Background

The public health threats imposed by toxoplasmosis worldwide and by malaria in sub-Saharan countries are directly associated with the capacity of their related causative agents Toxoplasma and Plasmodium, respectively, to colonize and expand inside host cells. Therefore, deciphering how these two Apicomplexan protozoan parasites access their host cells has been highlighted as a priority research with the perspective of designing anti-invasive molecules to prevent diseases. Central to the mechanism of invasion for both genera is mechanical force, which is thought to be applied by the parasite at the interface between the two cells following assembly of a unique cell-cell junction but this model lacks direct evidence and has been challenged by recent genetic studies. In this work, using parasites expressing the fluorescent core component of this junction, we analyze characteristic features of the kinematics of penetration of more than 1,000 invasion events.

Results

The majority of invasion events occur with a typical forward rotational progression of the parasite through a static junction into an invaginating host cell plasma membrane. However, if parasites encounter resistance and if the junction is not strongly anchored to the host cell cortex, as when parasites do not secrete the toxofilin protein and, therefore, are unable to locally remodel the cortical actin cytoskeleton, the junction travels retrogradely with the host cell membrane along the parasite surface allowing the formation of a functional vacuole. Kinetic measurements of the invasive trajectories strongly support a similar parasite driven force in both static and capped junctions, both of which lead to successful invasion. However, about 20% of toxofilin mutants fail to enter and eventually disengage from the host cell membrane while the secreted RhOptry Neck (RON2) molecules are posteriorally capped before being cleaved and released in the medium. By contrast in cells characterized by low cortex tension and high cortical actin dynamics junction capping and entry failure are drastically reduced.

Conclusions

This kinematic analysis newly highlights that to invade cells parasites need to engage their motor with the junction molecular complex where force is efficiently applied only upon proper anchorage to the host cell membrane and cortex.
  相似文献   

20.
The infection process and pathway of spreading ofFusarium culmorum in wheat spikes was examined by means of light, scanning and transmission electron microscopy after spray inoculation and single spikelet inoculation. Macroconidia of the pathogen germinated on the host surfaces, however, hyphal development and penetration of host tissues normally occurred on the inner surfaces of the lemma, glume and palea as well as on the ovary. The pathogen spread downward to the rachilla and rachis node by inter- and intracellular growth from the glume, lemma, palea and ovary. The pathogen extended in the rachis in upward and downward direction by inter- and intracellular growth inside and outside of the vascular bundles of the rachis. The spreading of the hyphae in the host tissues was associated with pronounced alterations including disintegration and digestion of host cell walls, suggesting production of cell wall degrading enzymes during infection and spreading in the host tissues. Immunogold labelling studies revealed that accumulation ofFusarium toxins in infected wheat spike tissue showed a close relationship to pathological changes in the host cells, symptom appearance and pathogen colonisation of the host tissue.Fusarium toxins may play an important role in wheat head blight development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号