首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We have investigated the actions of transforming growth factor (TGF) type alpha on epidermal growth factor (EGF) receptor mRNA expression in MDA-468 human mammary carcinoma cells in serum-free media. We found that exposure of MDA-468 cells to TGF alpha results in elevated levels of EGF receptor mRNA. This increase in mRNA accumulation showed time and dose dependence. Addition of TGF beta 1 enhanced the accumulation of EGF receptor mRNA induced by TGF alpha in a time- and dose-dependent manner. We also found that triiodothyronine at physiological concentrations exerts synergistic control on the action of TGF alpha alone, or in association with TGF beta 1, on EGF receptor mRNA expression. Similarly, retinoic acid treatment also enhanced in a time- and dose-dependent manner the TGF alpha-dependent response of EGF receptor mRNA and acted synergistically with TGF beta 1. The results described here suggest that optimum regulation of EGF receptor gene expression by TGF alpha is a complex process involving synergistic interactions with heterologous growth factors and hormones.  相似文献   

5.
Both transforming growth factor beta (TGF beta) and TGF alpha mRNA are expressed in human breast cancer cell lines. We have investigated the relationship of mRNA abundance for these growth modulators to the proliferation rate of a number of human breast cancer cell lines. Furthermore, we have investigated the relationship of regulation of TGF beta and TGF alpha mRNA to growth inhibition caused by progestins and nonsteroidal antiestrogens in T-47D human breast cancer cells. The abundance of TGF beta and TGF alpha mRNA in human breast cancer cell lines was not related directly to proliferation rate of the cells in culture or estrogen receptor positivity or negativity. The relationship of TGF beta and TGF alpha mRNA to growth inhibition caused by antiestrogens and progestins was investigated in T-47D human breast cancer cells. We observed that in T-47D human breast cancer cells the abundance of TGF beta mRNA is decreased in a time- and dose-dependent fashion by progestins but remains unaltered by nonsteroidal antiestrogens. Treatment of T-47D cells for 24 h with 10 nM medroxyprogesterone acetate (MPA) reduced the level of TGF beta mRNA to one third that present in untreated cells. The same treatment increased TGF alpha mRNA 3-fold above untreated controls in a time- and dose-dependent fashion and nonsteroidal antiestrogens caused a small decrease. The regulation of both TGF alpha and TGF beta mRNA was not directly related to inhibition of growth by progestins and antiestrogens in T-47D cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Regulation of ovarian cancer growth is poorly understood. In this study, the effects of EGF, TGF alpha and TGF beta 1 on two ovarian cancer cell lines (OVCAR-3 and CAOV-3) were investigated. The results showed that EGF/TGF alpha stimulated cell growth and DNA synthesis in OVCAR-3 cells, but inhibited cell proliferation and DNA synthesis in CAOV-3 cells. TGF beta 1 invariably inhibited cell proliferation and DNA synthesis in both cell lines. These effects on growth factors are dose dependent. The interaction of TGF beta 1 and EGF/TGF alpha was antagonistic in OVCAR-3 cells. In contrast, EGF/TGF alpha and TGF beta 1 had an additive inhibitory effect on CAOV-3 cells. Our results demonstrated that mature and functional EGF receptors are present in both cell lines and that they are capable of ligand binding, internalization, processing and ligand-enhanced autophosphorylation. Both high- and low-affinity binding are present in these cell lines, with CAOV-3 cells having about 2-3-fold higher total receptors than OVCAR-3 cells. These results together with those from our previous studies show that these cells express TGF alpha, TGF beta 1 and EGF receptors and that cell growth may be modulated by these growth factors in an autocrine and paracrine manner. This report presents evidence supporting the important roles of growth factors in ovarian cancer growth and provides a foundation for further study into the mechanism of growth regulation by growth factors in these cell lines.  相似文献   

7.
For thyroid cells in culture DNA fragmentation and morphological changes related to apoptosis were first described in dog thyroid cells after deprivation of serum, epidermal growth factor or thyrotropin. With intact porcine thyroid follicles in three-dimensional culture, the effect of deprivation of growth factors and of incubation with transforming growth factor beta1 (TGF-beta1), epidermal growth factor (EGF), thyrotropin (TSH) or insulin-like growth factor I (IGF-I) on the incidence of apoptosis was studied. Thyroid follicles were embedded in growth factor-depleted Matrigel and cultured in serum-free medium with or without growth factors for 7 days followed by incubation for 4, 24 and 72 h with TGF-beta1 (2 or 5 ng/mL). The percentage of apoptotic cells was determined by direct counting in electron-microscopy. Approximately 1% of apoptotic bodies could be detected in unstimulated follicles. This was unchanged in the presence of TSH (1 mU/mL) or IGF (10 ng/mL) but significantly increased up to 3.99 +/- 1.24% with 2 ng/mL of EGF. After incubation with TGF-beta apoptosis increased dose-dependently to 4.05 +/- 0.67% with 2 ng/mL TGF-beta1 and 5.16 +/- 1.75% with 5 ng/mL TGF-beta1. The incidence of necrotic cells remained constant at about 1 to 2%. Preincubation of follicles with 2 ng/mL of EGF followed by incubation with 5 ng/mL TGF-beta1 increased the rate of apoptic bodies up to 13.19 +/- 1.9%. We conclude that growth factor depletion in thyroid follicles in three-dimensional culture does not lead to apoptosis. TGF-beta1, however, induces apoptosis even in quiescent thyroid follicular cells and is significantly more pronounced in growing thyroid cells. EGF, which is a dedifferentiating growth factor for thyroid cells, also induces apoptosis. As EGF enhances TGF-beta1 mRNA and protein in thyroid follicular cells, the induction of apoptosis by EGF might also be due to TGF-beta1.  相似文献   

8.
9.
Our previous results have shown that transforming growth factor beta (TGFbeta) rapidly activates Ras, as well as both ERKs and SAPKs. In order to address the biological significance of the activation of these pathways by TGFbeta, here we examined the role of the Ras/MAPK pathways and the Smads in TGFbeta(3) induction of TGFbeta(1) expression in untransformed lung and intestinal epithelial cells. Expression of either a dominant-negative mutant of Ras (RasN17) or a dominant-negative mutant of MKK4 (DN MKK4), or addition of the MEK1 inhibitor PD98059, inhibited the ability of TGFbeta(3) to induce AP-1 complex formation at the TGFbeta(1) promoter, and the subsequent induction of TGFbeta(1) mRNA. The primary components present in this TGFbeta(3)-inducible AP-1 complex at the TGFbeta(1) promoter were JunD and Fra-2, although c-Jun and FosB were also involved. Furthermore, deletion of the AP-1 site in the TGFbeta(1) promoter or addition of PD98059 inhibited the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Collectively, our data demonstrate that TGFbeta(3) induction of TGFbeta(1) is mediated through a signaling cascade consisting of Ras, the MAPKKs MKK4 and MEK1, the MAPKs SAPKs and ERKs, and the specific AP-1 proteins Fra-2 and JunD. Although Smad3 and Smad4 were not detectable in TGFbeta(3)-inducible AP-1 complexes at the TGFbeta(1) promoter, stable expression of dominant-negative Smad3 could significantly inhibit the ability of TGFbeta(3) to stimulate TGFbeta(1) promoter activity. Transient expression of dominant-negative Smad4 also inhibited the ability of TGFbeta(3) to transactivate the TGFbeta(1) promoter. Thus, although the Ras/MAPK pathways are essential for TGFbeta(3) induction of TGFbeta(1), Smads may only contribute to this biological response in an indirect manner.  相似文献   

10.
Medium conditioned by Chinese hamster ovary (CHO) cells transfected with the simian pre-pro-TGF beta 1 cDNA contains high levels of latent TGF beta 1. The amino-terminal region of the TGF beta 1 precursor is secreted and can be detected in the conditioned medium by immunoblotting using peptide antibodies specific for amino-terminal peptides. Chemical cross-linking of CHO-conditioned medium using bis-(sulfosuccinimidyl)-suberate (BS3) followed by immunoblot analyses indicates that latent recombinant TGF beta 1 contains both the cleaved amino-terminal glycopeptide and mature TGF beta 1 polypeptide in a noncovalent association and that this association confers latency. The data presented here do not support the involvement of a unique TGF beta binding protein(s) in latent recombinant TGF beta 1. Plasmin treatment of CHO-conditioned medium resulted in the appearance of TGF beta competing activity. In addition, immunoblot analysis of plasmin-treated CHO-conditioned medium indicates that the amino-terminal glycopeptide is partially degraded and that mature TGF beta 1 is released. Thus, activation of latent TGF beta 1 may occur by proteolytic nicking within the amino-terminal glycopeptide thereby causing a disruption of tertiary structure and noncovalent bonds, which results in the release of active, mature TGF beta 1. Acid activation of latent TGF beta, in comparison, appears to be due to dissociation of the amino-terminal glycopeptide from the mature polypeptide.  相似文献   

11.
12.
Transforming growth factor beta 1 (TGF-beta 1) is a potent inhibitor of hepatocyte proliferation. Since loss of sensitivity to growth inhibition is thought to contribute to the development of neoplasia, we analyzed the expression of TGF-beta 1 mRNA during hepatocarcinogenesis in vivo and in cultured liver epithelial cells (oval cells) obtained from carcinogen-treated animals. We found that TGF-beta 1 mRNA increases in the liver during carcinogenesis and that, at the early stages of the process, oval cells but not hepatocytes contain the growth factor mRNA. Moreover, immortalized, nontumorigenic oval cells (LE/6 cell line) continued to produce TGF-beta 1 mRNA in culture. TGF-beta 1 message markedly decreased upon cell transformation, but message levels, although generally low, were variable in various tumor cell clones. A consistent feature of the tumorigenic cell lines was a loss of sensitivity to TGF-beta 1 growth inhibition. Tumor cells could bind TGF-beta 1 with similar capacity as normal cells and had the same type of receptors (Mr 280,000, 85,000, and 65,000) capable of binding iodinated TGF-beta 1, suggesting that the loss of sensitivity to TGF-beta 1 in transformed liver epithelial cells involves postreceptor mechanisms. Further studies showed that c-myc is not a target for TGF-beta 1 in liver epithelial cells and that TGF-beta 1 no longer induces fibronectin mRNA in transformed cells. The data presented are consistent with the hypothesis that TGF-beta 1 secreted during liver carcinogenesis may inhibit the proliferation of normal cells while providing a selective advantage for the growth of cells that are "partially transformed" and are unresponsive to the factor.  相似文献   

13.
Role of transforming growth factor beta in cancer   总被引:37,自引:0,他引:37  
Transforming growth factor beta (TGF-beta) is an effective and ubiquitous mediator of cell growth. The significance of this cytokine in cancer susceptibility, cancer development and progression has become apparent over the past few years. TGF-beta plays various roles in the process of malignant progression. It is a potent inhibitor of normal stromal, hematopoietic, and epithelial cell growth. However, at some point during cancer development the majority of transformed cells become either partly or completely resistant to TGF-beta growth inhibition. There is growing evidence that in the later stages of cancer development TGF-beta is actively secreted by tumor cells and not merely acts as a bystander but rather contributes to cell growth, invasion, and metastasis and decreases host-tumor immune responses. Subtle alteration of TGF-beta signaling may also contribute to the development of cancer. These various effects are tissue and tumor dependent. Identifying and understanding TGF-beta signaling pathway abnormalities in various malignancies is a promising avenue of study that may yield new modalities to both prevent and treat cancer. The nature, prevalence, and significance of TGF-beta signaling pathway alterations in various forms of human cancer as well as potential preventive and therapeutic interventions are discussed in this review.  相似文献   

14.

Introduction  

Transforming growth factor beta (TGFβ) plays a central role in morphogenesis, growth, and cell differentiation. This cytokine is particularly important in cartilage where it regulates cell proliferation and extracellular matrix synthesis. While the action of TGFβ on chondrocyte metabolism has been extensively catalogued, the modulation of specific genes that function as mediators of TGFβ signalling is poorly defined. In the current study, elements of the Smad component of the TGFβ intracellular signalling system and TGFβ receptors were characterised in human chondrocytes upon TGFβ1 treatment.  相似文献   

15.
The dysregulation of the metabolism of glycosaminoglycan and protein components of extracellular matrix (ECM) is a typical feature of diabetic complications. High glucose-induced enrichment of ECM with hyaluronan (HA) not only affects tissue structural integrity, but influences cell metabolic response due to the variety of effects depending on the HA polymer molecular weight. TSP-1-dependent activation of TGFbeta1 axis is known to mediate numerous matrix disorders in diabetes, but its role concerning HA has not been studied so far. In this work we demonstrated that 30 mM D-glucose increased the incorporation of [(3)H]glucosamine in high-molecular-weight (> 2000 kDa) HA of medium and matrix compartments of human mesangial cultures. Simultaneously, the synthesis of HA with lower molecular weight and HA degradation were not altered. The cause of the increased high-molecular-weight HA synthesis consisted in the up-regulation of hyaluronan synthase (HAS) 2 mRNA without alterations of the expression of HAS3, which generates HA of lower molecular weight. D-Glucose at 30 mM also stimulated the production of transforming growth factor beta1 (TGFbeta1), the excessive activation of which was determined by the up-regulation of thrombospondin-1 (TSP-1). The blockage of TGFbeta1 action either by neutralizing anti-TGFbeta1 antibodies or by quenching the TGFbeta1 activation (with TSP-1-derived synthetic GGWSHW peptide) abolished the effect of high glucose on HAS2 mRNA expression and normalized the synthesis of HA. Exogenous human TGFbeta1 had the same effect on HAS2 expression and HA synthesis as high glucose treatment. Therefore, we supposed that TSP-1-dependent TGFbeta1 activation is involved in the observed high glucose effect on HA metabolism. Since high-molecular-weight HA polymers, unlike middle- and low-molecular weight HA oligosaccharides, are known to possess anti-inflammatory and anti-fibrotic functions, we suppose that the enrichment of mesangial matrix with high-molecular-weight HA may represent an endogenous mechanism to limit renal injury in diabetes.  相似文献   

16.
17.
Protein phosphorylation and dephosphorylation are involved in regulation of cell growth. We tested the hypothesis that the growth inhibitory effect of transforming growth factor beta 1 (TGF-beta 1) involves activation of protein phosphatases. Exposure of human keratinocytes in culture to 400 pM TGF-beta 1 for 48 h led to 80% inhibition of DNA synthesis as measured by nuclear labeling. Incubation of cultured keratinocytes with 400 pM TGF-beta 1 rapidly activated (within 30 min) protein serine/threonine phosphatase, measured using phosphorylase as a substrate. Based on several criteria, including neutralization of activity with specific antibodies and inhibitor-2, TGF-beta 1-activated phosphorylase phosphatase was identified as protein phosphatase 1. TGF-beta 1 did not have rapid effects on protein serine/threonine phosphatase activity (type 2A) measured with histone phosphorylated by protein kinase C or on protein tyrosine phosphatase activity. However, protein tyrosine phosphatase was activated at 48 h, coincident with growth arrest. Differentiation, induced by the combination of TGF-beta 1 plus calcium or by serum, was not accompanied by further serine/threonine or tyrosine phosphatase activation. We conclude that induction of growth arrest in keratinocytes by TGF-beta 1 involves acute activation of protein phosphatase 1, while activation of protein tyrosine phosphatase may represent an additional mechanism for maintaining cells in a growth-arrested state.  相似文献   

18.
19.
20.
The epidermal growth factor (EGF) and transforming growth factor beta (TGFbeta) families of signaling molecules play a major role in growth and development of embryos. Abrogation of either signaling pathway results in defects in embryogenesis, including cleft palate. In the developing palate, both EGF and TGFbeta regulate cellular proliferation, extracellular matrix synthesis, and cellular differentiation but often in an opposing manner. Evidence from various adult cell types suggests the existence of cross talk between the EGF and TGFbeta signaling pathways, although it is unclear whether such cross talk exists in murine embryonic maxillary mesenchymal cells, from which the developing palate is derived. In this study, embryonic maxillary mesenchymal cells in culture were treated with EGF and TGFbeta, either singly or in combination, and the cells were subsequently examined for signaling interactions between these two pathways. Immunoblot analyses of nuclear extracts of embryonic maxillary mesenchymal cells revealed that TGFbeta-induced nuclear translocation of Smad 2 and Smad 3 proteins was not affected by EGF. Conversely, immunoblot analyses of whole-cell extracts of these cells indicated that EGF-induced phosphorylation of extracellular signal-regulated kinase proteins, ERK1 and ERK2, was not affected by TGFbeta. Expression of a transfected luciferase reporter gene driven by a promoter with Smad binding elements was induced by TGFbeta in these cells but was not affected by EGF. Last, TGFbeta was found to induce expression of the endogenous gelatinase B gene in embryonic maxillary mesenchymal cells; however, this effect was independent of any interaction of EGF. Collectively, data from this study suggest that the EGF and TGFbeta signal transduction pathways do not converge in murine embryonic maxillary mesenchymal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号