首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Ure2 protein of Saccharomyces cerevisiae can become a prion (infectious protein). At very low frequencies Ure2p forms an insoluble, infectious amyloid known as [URE3], which is efficiently transmitted to progeny cells or mating partners that consequently lose the normal Ure2p nitrogen regulatory function. The [URE3] prion causes yeast cells to grow slowly, has never been identified in the wild, and confers no obvious phenotypic advantage. An N-terminal asparagine-rich domain determines Ure2p prion-forming ability. Since ure2Delta strains are complemented by plasmids that overexpress truncated forms of Ure2p lacking the prion domain, the existence of the [URE3] prion and the evolutionary conservation of an N-terminal extension have remained mysteries. We find that Ure2p function is actually compromised in vivo by truncation of the prion domain. Moreover, Ure2p stability is diminished without the full-length prion domain. Mca1p, like Ure2p, has an N-terminal Q/N-rich domain whose deletion reduces its steady-state levels. Finally, we demonstrate that the prion domain may affect the interaction of Ure2p with other components of the nitrogen regulation system, specifically the negative regulator of nitrogen catabolic genes, Gzf3p.  相似文献   

5.
The 70-kDa heat shock protein (Hsp70) family of molecular chaperones cooperates with cofactors to promote protein folding, assembly of protein complexes and translocation of proteins across membranes. Although many cofactors of cytosolic Hsp70s have been identified, knowledge about cofactors of BiP/Kar2p, an endoplasmic reticulum (ER)-resident Hsp70, is still poor. Here we propose the Saccharomyces cerevisiae protein Rot1p as a possible cofactor of BiP/Kar2p involved in protein folding. Rot1p was found to be an essential, ER-localized membrane protein facing the lumen. ROT1 genetically interacted with several ER chaperone genes including KAR2, and the rot1-2 mutation triggered the unfolded protein response. Rot1p associated with Kar2p, especially under conditions of ER stress, and maturation of a model protein, a reduced form of carboxypeptidaseY, was impaired in a kar2-1 rot1-2 double mutant. These findings suggest that Rot1p participates in protein folding with Kar2p. Morphological analysis of rot1-2 cells revealed cell wall defects and accumulation of autophagic bodies in the vacuole. This implies that the protein folding machinery in which Rot1p is involved chaperones proteins acting in various physiological processes including cell wall synthesis and lysis of autophagic bodies.  相似文献   

6.
To identify new proteins involved in Mn2+ homeostasis, we isolated Mn(2+)-resistant mutants of Saccharomyces cerevisiae starting from a calcineurin-deficient, Mn2+ hypersensitive strain (delta cmp1 delta cmp2). The mutations were found to lie in the PMR1 gene, known to encode a "P-type" Ca(2+)-ATPase that transports Ca2+ and Mn2+ from the cytosol to the Golgi apparatus. A second gene, AHP1, was cloned as a suppressor of the Mn2+ tolerance of a delta cmp1 delta cmp2 pmr1 mutant. Ahp1p was recently described as a thioredoxin peroxidase type II, an antioxidant protein with alkyl hydroperoxide defense properties in yeast. AHP1 disruption in strain W303 decreased tolerance to Mn2+ and H2O2. We found that a GFP-Ahp1p fusion construct was in the cytosol when cells were grown in glucose, and in the mitochondria when cells were grown in oleate. Based on Mn2+ transport data, we concluded that Ahp1p is involved in cellular Mn2+ homeostasis in trafficking of Mn2+ from cytosol to mitochondria and from cytosol for export across the plasma membrane.  相似文献   

7.
Little is known about the structure of the individual nucleoporins that form eukaryotic nuclear pore complexes (NPCs). We report here in vitro physical and structural characterizations of a full-length nucleoporin, the Saccharomyces cerevisiae protein Nup2p. Analyses of the Nup2p structure by far-UV circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, protease sensitivity, gel filtration, and sedimentation velocity experiments indicate that Nup2p is a "natively unfolded protein," belonging to a class of proteins that exhibit little secondary structure, high flexibility, and low compactness. Nup2p possesses a very large Stokes radius (79 A) in gel filtration columns, sediments slowly in sucrose gradients as a 2.9 S particle, and is highly sensitive to proteolytic digestion by proteinase K; these characteristics suggest a structure of low compactness and high flexibility. Spectral analyses (CD and FTIR spectroscopy) provide additional evidence that Nup2p contains extensive regions of structural disorder with comparatively small contributions of ordered secondary structure. We address the possible significance of natively unfolded nucleoporins in the mechanics of nucleocytoplasmic trafficking across NPCs.  相似文献   

8.
Here we report that the Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encodes a 29-kDa cytoplasmic protein that binds to mRNA in vivo. Rbp29p can be co-immunoprecipitated with the poly(A) tail-binding protein Pab1p from crude yeast extracts in a dosage- and RNA-dependent manner. In addition, recombinant Rbp29p binds preferentially to poly(A) with nanomolar binding affinity in vitro. Although RBP29 is not essential for cell viability, its deletion exacerbates the slow growth phenotype of yeast strains harboring mutations in the eIF4G genes TIF4631 and TIF4632. Furthermore, overexpression of RBP29 suppresses the temperature-sensitive growth phenotype of specific tif4631, tif4632, and pab1 alleles. These data suggest that Rbp29p is an mRNA-binding protein that plays a role in modulating the expression of cytoplasmic mRNA.  相似文献   

9.
A Gtr1p GTPase, the GDP mutant of which suppresses both temperature-sensitive mutants of Saccharomyces cerevisiae RanGEF/Prp20p and RanGAP/Rna1p, was presently found to interact with Yrb2p, the S. cerevisiae homologue of mammalian Ran-binding protein 3. Gtr1p bound the Ran-binding domain of Yrb2p. In contrast, Gtr2p, a partner of Gtr1p, did not bind Yrb2p, although it bound Gtr1p. A triple mutant: yrb2delta gtr1delta gtr2delta was lethal, while a double mutant: gtr1delta gtr2delta survived well, indicating that Yrb2p protected cells from the killing effect of gtr1delta gtr2delta. Recombinant Gtr1p and Gtr2p were purified as a complex from Escherichia coli. The resulting Gtr1p-Gtr2p complex was comprised of an equal amount of Gtr1p and Gtr2p, which inhibited the Rna1p/Yrb2 dependent RanGAP activity. Thus, the Gtr1p-Gtr2p cycle was suggested to regulate the Ran cycle through Yrb2p.  相似文献   

10.
Petreaca RC  Chiu HC  Nugent CI 《Genetics》2007,177(3):1459-1474
The function of telomeres is twofold: to facilitate complete chromosome replication and to protect chromosome ends against fusions and illegitimate recombination. In the budding yeast Saccharomyces cerevisiae, interactions among Cdc13p, Stn1p, and Ten1p are thought to be critical for promoting these processes. We have identified distinct Stn1p domains that mediate interaction with either Ten1p or Cdc13p, allowing analysis of whether the interaction between Cdc13p and Stn1p is indeed essential for telomere capping or length regulation. Consistent with the model that the Stn1p essential function is to promote telomere end protection through Cdc13p, stn1 alleles that truncate the C-terminal 123 residues fail to interact with Cdc13p and do not support viability when expressed at endogenous levels. Remarkably, more extensive deletions that remove an additional 185 C-terminal residues from Stn1p now allow cell growth at endogenous expression levels. The viability of these stn1-t alleles improves with increasing expression level, indicating that increased stn1-t dosage can compensate for the loss of Cdc13p-Stn1p interaction. However, telomere length is misregulated at all expression levels. Thus, an amino-terminal region of Stn1p is sufficient for its essential function, while a central region of Stn1p either negatively regulates the STN1 essential function or destabilizes the mutant Stn1 protein.  相似文献   

11.
The SEC20 gene of Saccharomyces cerevisiae encodes a 50 kDa type II integral membrane glycoprotein that is required for endoplasmic reticulum (ER) to Golgi transport. Here, we have used a genetic screen, based on the lethal effect of overexpressing the cytoplasmic domain of Sec20p, to identify a novel cytosolic factor that interacts with SEC20. This factor is an 80 kDa cytoplasmic protein encoded by the TIP1 (SEC twenty interacting protein) gene. Coimmunoprecipitation and immunofluorescence using Tip1p and Sec20p or its cytoplasmic domain showed that the two proteins physically interact to form a stable complex. Like SEC20, TIP1 is required for ER to Golgi transport and depletion of Tip1p results in accumulation of an extensive network of ER plus small transport vesicles. We therefore propose that Sec20p and Tip1p act together as a functional unit in the ER to Golgi transport step.  相似文献   

12.
13.
Mismatch repair proteins act during double-strand break repair (DSBR) to correct mismatches in heteroduplex DNA, to suppress recombination between divergent sequences, and to promote removal of nonhomologous DNA at DSB ends. We investigated yeast Msh2p association with recombination intermediates in vivo using chromatin immunoprecipitation. During DSBR involving nonhomologous ends, Msh2p localized strongly to recipient and donor sequences. Localization required Msh3p and was greatly reduced in rad50delta strains. Minimal localization of Msh2p was observed during fully homologous repair, but this was increased in rad52delta strains. These findings argue that Msh2p-Msh3p associates with intermediates early in DSBR to participate in the rejection of homeologous pairing and to stabilize nonhomologous tails for cleavage by Rad1p-Rad10p endonuclease.  相似文献   

14.
15.
Initiation of cell division is controlled by an irreversible switch. In Saccharomyces cerevisiae degradation of the Sic1p protein, an inhibitor of mitotic cyclin/cyclin-dependent kinase complexes, takes place before initiation of DNA replication, at a point called START. Sic1p is phosphorylated by multiple kinases, which can differentially affect the stability of Sic1p. How phosphorylations that stabilize Sic1p are reversed is unknown. Here we show that the Dcr2p phosphatase functionally and physically interacts with Sic1p. Over-expression of Dcr2p destabilizes Sic1p and leads to phenotypes associated with destabilized Sic1p, such as genome instability. Our results identify a novel factor that affects the stability of Sic1p, possibly contributing to mechanisms that trigger initiation of cell division.  相似文献   

16.
Summary Janus green B was found to be a specific inhibitor of mitochondrial function in yeast. This is consistent with the Janus green specificity in supravital staining of mitochondria.A mutant of S. cerevisiae resistant to Janus green B was isolated. It shows cross resistance to oligomycin, ethidium bromide and a weak resistance to chloramphenicol. The mutant was found to be sensitive to cycloheximide and erythromycin.Genetic analysis of this mutant showed that mitochondrial genes are not involved in the determination of Janus green resistance. Tetrad analysis suggested that two or more nuclear genes are concerned, but many unusual genetic features suggestive of the involvement of a cytoplasmic element remain to be explained.  相似文献   

17.
18.
A conditional respiratory deficiency in yeast Saccharomyces cerevisiae is expressed as a result of a nuclear mutation in sup1 and sup2 genes (II and IV chromosomes, respectively), coding for a component of cytoplasmic ribosomes (Ter-Avanesyan et al. 1982). One such strain is studied here in detail. The strain is temperature-dependent and expresses a respiratory deficient phenotype at 20 degrees C but not at 30 degrees C. Moreover, the strain is simultaneously chloramphenicol-dependent and is able to grow on media containing glycerol or ethanol as a sole carbon source only in the presence of the drug. Chloramphenicol has a differential effect on protein synthesis in mitochondria of the parent strain and the mutant. Since chloramphenicol is a ribosome-targeting antibiotic we suggest that the differential effect of the drug on parent and mutant mitochondrial protein synthesis is due to the altered properties of mito-ribosomes of the mutant compared to those of the parent strain. Mitochondria of the mutant synthesize all the mitochondrially encoded polypeptides, however, in significantly lowered amounts. A suggestion is put forward for the existence of a common component (a ribosomal protein) for mito and cyto-ribosomes.  相似文献   

19.
【目的】研究转录调控因子Bas1p和Bas2p协同作用对重组酿酒酵母(Saccharomyces cerevisiae)胞外c AMP产生的影响,初步优化发酵培养基。【方法】通过共整合表达策略,在c AMP产生菌酿酒酵母G5中超表达Bas1p和Bas2p,摇瓶发酵实验考察了Bas1p和Bas2p协同作用对菌株生长及胞外c AMP产生的影响,进一步考察了酵母粉和蛋白胨含量及前体物腺嘌呤对菌株生长和c AMP产生的影响。【结果】超表达Bas1p和Bas2p使菌株在1×YP培养基中发酵120 h时的c AMP产量较出发菌株提高51.4%,达到2 253.8μmol/L;将1×YP中的酵母粉和蛋白胨含量翻倍(即2×YP培养基)发酵120 h时的c AMP产量提高至4 450.4μmol/L;在2×YP培养基中添加0.5 g/L浓度的腺嘌呤时,c AMP产量进一步提高至5 314.3μmol/L。【结论】强化Bas1p和Bas2p的协同作用及相应地优化培养基组分有助于酿酒酵母胞外c AMP生产。  相似文献   

20.
Kinesin-5 motor proteins are evolutionarily conserved and perform essential roles in mitotic spindle assembly and spindle elongation during anaphase. Previous studies demonstrated a specialized homotetrameric structure with two pairs of catalytic domains, one at each end of a dumbbell-shaped molecule. This suggests that they perform their spindle roles by cross-linking and sliding antiparallel spindle microtubules. However, the exact kinesin-5 sequence elements that are important for formation of the tetrameric complexes have not yet been identified. In addition, it has not been demonstrated that the homotetrameric form of these proteins is essential for their biological functions. Thus, we investigated a series of Saccharomyces cerevisiae Cin8p truncations and internal deletions, in order to identify structural elements in the Cin8p sequence that are required for Cin8p functionality, spindle localization, and multimerization. We found that all variants of Cin8p that are functional in vivo form tetrameric complexes. The first coiled-coil domain in the stalk of Cin8p, a feature that is shared by all kinesin-5 homologues, is required for its dimerization, and sequences in the last part of the stalk, specifically those likely involved in coiled-coil formation, are required for Cin8p tetramerization. We also found that dimeric forms of Cin8p that are nonfunctional in vivo can nonetheless bind to microtubules. These findings suggest that binding of microtubules is not sufficient for the functionality of Cin8p and that microtubule cross-linking by the tetrameric complex is essential for Cin8p mitotic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号