首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang Z  Inomata N  Ohba T  Cariou ML  Yamazaki T 《Genetics》2002,161(3):1187-1196
We examined the pattern of synonymous substitutions in the duplicated Amylase (Amy) genes (called the Amy1- and Amy3-type genes, respectively) in the Drosophila montium species subgroup. The GC content at the third synonymous codon sites of the Amy1-type genes was higher than that of the Amy3-type genes, while the GC content in the 5'-flanking region was the same in both genes. This suggests that the difference in the GC content at third synonymous sites between the duplicated genes is not due to the temporal or regional changes in mutation bias. We inferred the direction of synonymous substitutions along branches of a phylogeny. In most lineages, there were more synonymous substitutions from G/C (G or C) to A/T (A or T) than from A/T to G/C. However, in one lineage leading to the Amy1-type genes, which is immediately after gene duplication but before speciation of the montium species, synonymous substitutions from A/T to G/C were predominant. According to a simple model of synonymous DNA evolution in which major codons are selectively advantageous within each codon family, we estimated the selection intensity for specific lineages in a phylogeny on the basis of inferred patterns of synonymous substitutions. Our result suggested that the difference in GC content at synonymous sites between the two Amy-type genes was due to the change of selection intensity immediately after gene duplication but before speciation of the montium species.  相似文献   

2.
In some Drosophila species, there are two types of greatly diverged amylase (Amy) genes (Amy clusters 1 and 2), each encoding active amylase isozymes. Cluster 1 is located at the middle of its chromosomal arm, and the region has a normal local recombination rate. However, cluster 2 is near the centromere, and this region is known to have a reduced recombination rate. Although nonsynonymous substitutions follow a molecular clock, synonymous substitutions were accelerated in cluster 2 after gene duplications. This resulted in a higher GC content at the third codon position (GC3) and codon usage bias in cluster 1, and lower GC3 content and codon usage bias in the cluster 2. However, no systematic difference in GC content was observed in the first and second codon positions or the 3'-flanking regions. Therefore, differences in local recombination rate rather than mutation bias might explain the divergence at synonymous sites between the two Amy clusters within species (Hill-Robertson effect). Alternatively, the different patterns and levels of expression between the two clusters may imply that the reduced expression level in cluster 2 caused by chromatin potentiation decreased the codon bias. Both of these hypotheses imply the importance of the genomic background as a driving force of divergence between non-tandemly duplicated genes.  相似文献   

3.
The Amylase locus in Drosophila melanogaster normally contains two copies of the structural gene for alpha-amylase, a centromere-proximal copy, Amy-p, and a distal copy, Amy-d. Products of the two genes may display discrete electrophoretic mobilities, but many strains known to carry the Amy duplication are characterized by a single amylase electromorph, e.g., Oregon-R, which produces the mobility variant AMY-1. A transient expression assay was used in somatic transformation experiments to test the functional status of the Amy genes from an Oregon-R strain. Plasmid constructs containing either the proximal or distal copy were tested in amylase-null hosts. Both genes produced a functional AMY-1 isozyme. Constructs were tested against an AMY-3 reference activity produced by a coinjected plasmid that contains the Amy-d3 allele from a Canton-S strain. With reference to the internal control, the Amy-p and Amy-d genes from Oregon-R expressed different relative activity levels for AMY-1 in transient assays. The transient expression assay was successfully used to test the functional status of Amy-homologous sequences from strains of other species of Drosophila characterized by a single amylase elctromorph, namely, Drosophila pseudoobscura ST and Drosophila miranda S 204. The amylase-null strain of D. melanogaster provided the hosts for these interspecific somatic transformation experiments.  相似文献   

4.
We examined levels and patterns of the nucleotide polymorphism of the Amylase genes with a head-to-head duplication in Drosophila kikkawai. The levels of variation in D. kikkawai were comparable to those in Drosophila melanogaster. Tajima's test, Fu and Li's test, HKA test, and MK test did not show significant departure from neutrality. We found an excess of replacement changes in the within-locus class, representing polymorphism in one of the duplicated genes, compared with the between-locus class, representing polymorphism shared between the duplicated genes. Most replacement changes in the within-locus class were singletons. These results suggest that most replacement changes are deleterious. A contrasting evolutionary pattern, involving concerted evolution in the coding regions but differential evolution in the 5'-flanking regions, was observed. However, unlike the duplicated Amy genes of D. melanogaster, the coding regions of the duplicated genes in D. kikkawai tended to diverge. Using Ohta's model of the small multigene family, we found that recombination (interchromosomal equal crossing-over) rate was one order higher than gene conversion (unequal crossing-over) rate, resulting in a considerable but incomplete homogenization of the duplicated coding regions. Linkage disequilibria were found in the intron as well as within and around the regulatory cis-element sequences of one of the duplicated genes (Amy1). The possible causes of these linkage disequilibria were discussed.  相似文献   

5.
The alpha-Amylase locus in Drosophila pseudoobscura is a multigene family of one, two or three copies on the third chromosome. The nucleotide sequences of the three Amylase genes from a single chromosome of D. pseudoobscura are presented. The three Amylase genes differ at about 0.5% of their nucleotides. Each gene has a putative intron of 71 (Amy1) or 81 (Amy2 and Amy3) bp. In contrast, Drosophila melanogaster Amylase genes do not have an intron. The functional Amy1 gene of D. pseudoobscura differs from the Amy-p1 gene of D. melanogaster at an estimated 13.3% of the 1482 nucleotides in the coding region. The estimated rate of synonymous substitutions is 0.398 +/- 0.043, and the estimated rate of nonsynonymous substitutions is 0.068 +/- 0.008. From the sequence data we infer that Amy2 and Amy3 are more closely related to each other than either is to Amy1. From the pattern of nucleotide substitutions we reason that there is selection against synonymous substitutions within the Amy1 sequence; that there is selection against nonsynonymous substitutions within the Amy2 sequence, or that Amy2 has recently undergone a gene conversion with Amy1; and that Amy3 is nonfunctional and subject to random genetic drift.  相似文献   

6.
In the chicken population at large, three electrophoretically distinct pancreatic alpha-amylase isozymes were discovered. The isozymes were designated Pa 1, Pa 2, and Pa 3. The local population of chickens, however, possessed only isozymes Pa 2 and Pa 3 present as three phenotypes: Amy-2 B, consisting of isozyme Pa2; Amy2 BC, consisting of isozymes Pa 2 plus Pa 3; and Amy2 C, consisting of isozyme Pa 3. Pancreatic biopsy permitted the establishment of a breeding flock with defined amylase phenotypes. Matings of this flock established that amylases are inherited as codominant alleles at a single genetic locus. Further, there was no evidence of ontogenetic modification of the amylase isozymes. It was observed that amylase isozymes Pa 2 and Pa 3 each generated a family of at least three faster-migrating amylolytic proteins. These post-translationally modified amylases were designated Pa Xa, Pa Xb, and Pa Xc, where X represents the number of the progenitor amylase. Structural analyses of purified amylases demonstrated that all amylase isozymes are nonglycosidated, monomeric molecules of molecular weight 55,000. In addition, the data are consistent with the hypothesis that the faster-migrating amylases are produced by deamidation of asparagine and/or glutamine residues.  相似文献   

7.
E. N. Moriyama  T. Gojobori 《Genetics》1992,130(4):855-864
We compared the rates of synonymous (silent) substitution among various genes in a number of species of Drosophila. First, we found that even for a particular gene, the rate of synonymous substitution varied considerably with Drosophila lineages. Second, we showed a large variation in synonymous substitution rates among nuclear genes in Drosophila. These rates of synonymous substitution were correlated negatively with C content and positively with A content at the third codon positions. Nucleotide sequences were also compared between pseudogenes and their functional homologs. The C content of the pseudogenes was lower than that of the functional genes and the A content of the former was higher than that of the latter. Because the synonymous substitution for functional genes and the nucleotide substitution for pseudogenes are exempted from any selective constraint at the protein level, these observations could be explained by a biased pattern of mutation in the Drosophila nuclear genome. Such a bias in the mutation pattern may affect the molecular clock (local clock) of each nuclear gene of each species. Finally, we obtained the average rates of synonymous substitution for three gene groups in Drosophila; 11.0 x 10(-9), 17.5 x 10(-9) and 27.1 x 10(-9)/site/year.  相似文献   

8.
S Steinemann  M Steinemann 《Genetics》1999,151(1):151-161
On the basis of chromosomal homology, the Amylase gene cluster in Drosophila miranda must be located on the secondary sex chromosome pair, neo-X (X2) and neo-Y, but is autosomally inherited in all other Drosophila species. Genetic evidence indicates no active amylase on the neo-Y chromosome and the X2-chromosomal locus already shows dosage compensation. Several lines of evidence strongly suggest that the Amy gene cluster has been lost already from the evolving neo-Y chromosome. This finding shows that a relatively new neo-Y chromosome can start to lose genes and hence gradually lose homology with the neo-X. The X2-chromosomal Amy1 is intact and Amy2 contains a complete coding sequence, but has a deletion in the 3''-flanking region. Amy3 is structurally eroded and hampered by missing regulatory motifs. Functional analysis of the X2-chromosomal Amy1 and Amy2 regions from D. miranda in transgenic D. melanogaster flies reveals ectopic AMY1 expression. AMY1 shows the same electrophoretic mobility as the single amylase band in D. miranda, while ectopic AMY2 expression is characterized by a different mobility. Therefore, only the Amy1 gene of the resident Amy cluster remains functional and hence Amy1 is the dosage compensated gene.  相似文献   

9.
10.
The relationship between the net charge of molecules and their mobility on electrophoresis was analyzed for Drosophila alpha-amylases. Most of the differences in electrophoretic mobility, 98.2%, can be explained by the charge state. Therefore five reference amino acid sites, which are informative residues for charge differences among amylase isozymes, were considered for the evolution of the isozymes in Drosophila melanogaster. The amylase isozymes in D. melanogaster can be classified into three groups, I (AMY1, AMY2, and AMY3-A), II (AMY3-B and AMY4), and III (AMY5, AMY6-A, and AMY6-B), based on the differences in the reference sites. The most primitive amylase in D. melanogaster was found to belong to Group I, most likely the AMY2 isozyme. Groups II and III could have been derived from Group I. These results were confirmed by the analysis of 38 amino acid sites with charge differences in Drosophila.  相似文献   

11.
Shi X  Wang X  Li Z  Zhu Q  Tang W  Ge S  Luo J 《Gene》2006,376(2):199-206
Understanding the correlation between synonymous substitution rate and GC content is essential to decipher the gene evolution. However, it has been controversial on their relationship. We analyzed the GC content and synonymous substitution rate in 1092 paralogues produced by two large-scale duplication events in the rice genome. According to the GC content at the third codon sites (GC3), the paralogues were classified into GC3-rich and GC3-poor genes. By referring to their outgroup sequences, we inferred the last common ancestor of sister paralogues and, consequently, calculated the average synonymous substitution rate for two gene classes. The results suggest that average synonymous substitution rate is lower in GC3-rich genes than that in GC3-poor genes, indicating that the synonymous substitution rate is negatively correlated with GC content in the rice genome. Through characterizing the synonymous nucleotide substitution pattern, we found a strong synonymous nucleotide substitution frequency bias from AT to GC in GC3-rich genes. This indicates possible limitations of commonly used methods developed to estimate the synonymous substitution rate. Their estimates might produce misleading results on correlation between the synonymous substitution rate and GC content.  相似文献   

12.
Escherichia coli K-12 mutants showing an altered isozyme pattern of alkaline phosphatase were isolated. Whereas wild-type strains synthesized all three isozymes in a synthetic medium supplemented with Casamino Acids or arginine but synthesized only isozyme 3 in a medium without supplement, the mutant strains synthesized isozyme 1 and a small amount (if any) of isozyme 2, but no isozyme 3, under all growth conditions. The mutation responsible for the altered isozyme pattern, designated iap, was mapped by P1 transduction in the interval between cysC and srl (at about 58.5 min on the E. coli genetic map). It was cotransducible with cysC and srl at frequencies of 0.54 and 0.08, respectively. The order of the genes in this region was srl-iap-cysC-argA-thyA-lysA. Three more independent mutations were also mapped in the same locus. We purified isozymes 1' and 3' from iap and iap+ strains and analyzed the sequences of four amino acids from the amino terminus of each polypeptide. They were Arg-Thr-Pro-Glu (or Gln) in isozyme 1' and Thr-Pro-Glu (or gln)-Met in isozyme 3', which were identical with those of corresponding isozymes produced by the wild-type phoA+ strain (P.M. Kelley, P.A. Neumann, K. Schriefer, F. Cancedda, M.J. Schlesinger, and R.A. Bradshaw, Biochemistry 12:3499-3503, 1973; M.J. Schlesinger, W. Bloch, and P.M. Kelley, p. 333-342, in Isozymes, Academic Press Inc., 1975). These results indicate that the different mobilities of isozymes 1, 2, and 3 are determined by the presence or absence of amino-terminal arginine residues in polypeptides.  相似文献   

13.
The functional locus for alpha-amylase (Amy) in Drosophila miranda is in the evolutionarily new X2 chromosome. X2 evolved from an autosome in response to an ancestral autosome-Y translocation that gave rise to the "neo-Y" chromosome of this species. Y-linked Amy, if still present in the ancestrally translocated element, is unexpressed. Dosage compensation for amylase activity was examined in larvae of the S 204 strain. Since dietary glucose is known to repress Amy expression in Drosophila melanogaster, dosage compensation of amylase activity in male larvae of D. miranda was tested by rearing larvae of both sexes on yeast diets with or without a glucose supplement. The WT 10 strain of Drosophila persimilis, a sibling species in which Amy is autosomally linked, was used as a reference for tests of amylase activity differences between the sexes. On the diet with glucose, Amy expression was repressed in both WT 10 and S 204 larvae and male larvae of S 204 displayed dosage compensation for amylase activity. On the nonrepressing diet consisting of yeast alone, S 204 continued to display dosage compensation.  相似文献   

14.
The number and organization of amylase genes in Drosophila ananassae were investigated through classical genetic methods and in situ and filter hybridizations. At least four genes may be active in D. ananassae, organized as two independent pairs of closely linked copies on the 2L and 3L chromosomal arms. Several other species of the D. ananassae subgroup were studied and show the same chromosomal locations, suggesting an ancient duplication event. However, the number of Amy copies seems to be higher in the D. ananassae multigene family, and there is a striking intraspecific molecular differentiation.  相似文献   

15.
N. Inomata  H. Shibata  E. Okuyama    T. Yamazaki 《Genetics》1995,141(1):237-244
To infer the genealogical relationships of α-amylase electromorphs of Drosophila melanogaster, we determined the nucleotide sequences of a collection of electromorphs sampled throughout the world. On average there were 1.0 amino acid substitutions between identical electromorphs and 3.9 between different electromorphs, respectively. We found that the evolution of AMY(1) through AMY(6) electromorphs occurred by sequential accumulation of single amino acid substitutions each causing one charge difference. The nucleotide diversities at synonymous sites within Amy(1),Amy(2),Amy(3),Amy(4) and Amy(6) were 0.0321, 0.0000, 0.0355, 0.0059 and 0.0030, respectively. We also obtained evidence of genetic exchanges, such as intrachromosomal recombination, interchromosomal recombination or gene conversion, between the two duplicated Amy genes as well as among the alleles.  相似文献   

16.
In Drosophila pseudoobscura, the amylase (Amy) multigene family is contained within a series of inversions, or gene arrangements, on the third chromosome. The Standard (ST), Santa Cruz (SC), and Tree Line (TL) inversions are central to the phylogeny of arrangements, and have clusters of other arrangements derived from them. The gene arrangements belonging to each of these three clusters have a characteristic number of Amy genes, ranging from three in ST to two in SC to one in TL. This distribution pattern can reflect a history of either duplications or deletions, although the data available in the past did not permit a decision between these alternatives. We provide unambiguous evidence that three Amy genes were present before the divergence of the ST, SC, and TL arrangements. Thus, the current status of the Amy multigene family is the result of deletions in the TL and SC arrangements, which created three new pseudogenes: TL Amy2-psi, TL Amy3-psi, and SC Amy3- psi. Analysis of pseudogene sequences revealed that, in the SC and ST arrangements, pseudogene evolution has been retarded, most likely due to the homogenization effect of gene conversion. Finally, by determining the original copy number, we have reconstructed the evolutionary history of the Amy multigene family and linked it with the evolution of the central gene arrangements.   相似文献   

17.
In this paper, the author notes the recommended definition of the word "homology" (i.e., indicating an ancestral relationship) and the recommended stipulation that "evidence for homology should be explicitly laid out". The postulated homology for somatic and testes-specific isozymes of cytochrome c is then examined, using recent data obtained from the study of cytochrome c genes. Consideration is also given to some newer findings of molecular biology and possibilities are considered for various types of change in the genome of an organism. Possible roles of introns, pseudogenes and multigene families are considered. The relationship of testes-specific cytochrome c to somatic cytochrome c is carefully considered from data obtained in experimental studies of genes of these two isozymes. If one assumes that these isozymes arose as a consequence of a gene duplication, data from rat and mouse genes indicate that the testes-specific isozyme has incorporated more amino acid changes than the somatic isozyme since the time of their divergence. However, when the 15 amino acid differences (testes-specific vs. somatic isozyme) are considered, there is virtually no similarity in these 15 positions of the testes-specific isozyme with any of the hypothetical ancestral sequences of the somatic isozyme. Nucleotide differences in cytochrome c genes have been evaluated by comparing genes for the two rodent cytochrome c isozymes to cytochrome c genes of fruit flies, chickens and humans. Comparisons of nucleotide substitution rates in genes for the two cytochrome c isozymes in rodents confirm the conclusions from amino acid sequence comparisons; namely, that more rapid nucleotide changes have occurred in the testes-specific cytochrome c gene, than in the somatic cytochrome c gene. Possible explanations for these findings are considered.  相似文献   

18.
In natural populations of Drosophila melanogaster, an amylase isozyme with the lowest alpha-amylase activity (AMY(1,1)) is predominant. To evaluate the selective significance of AMY(1,1) and its regulatory factor(s), we examined selection experiments in laboratory populations on two distinct food environments. After 300 generations, AMY(1,1) became predominant (89%) in a glucose (a product of AMY)-rich environment, while an isozyme with higher alpha-amylase activity, AMY(1,6), became predominant (83%) in a starch (substrate)-rich environment. We found that the identical alleles of the amylase (Amy) gene, which encodes each of AMY(1,1) and AMY(1,6), were shared between the two populations in the different food environments, employing the nucleotide sequencing of the duplicated Amy genes. Nevertheless, AMY(1,6) homozygotes selected in the starch-rich environment had a twofold higher AMY enzyme activity than those selected in the glucose-rich environment, suggesting a coadaptation of the coding region and its regulatory factor(s) on the genetic background. Such a difference in AMY enzyme activity was not detected between AMY(1,1) homozygotes, suggesting that the effect of the genetic background is epistatic. Our results indicate that natural selection is working on the Amy gene system as a whole for flies to adapt to the various food environments of local populations.  相似文献   

19.
Abstract A general correlation between neural expression and negative charge in isozymes suggests charge represents an adaptation to the neural environment. Interestingly, a notable exception exists in teleost fish. Two cytosolic malate dehydrogenase (MDH) isozymes have different spatial expression patterns in certain fishes: one is expressed in all tissues and the second is expressed primarily in the eye and skeletal muscle. While the neural MDH isozyme is negatively charged, the difference in charge between the two isozymes is not as pronounced as that observed in other gene families (e.g., triosephosphate isomerase and lactate dehydrogenase). Most tetrapods express a single cytosolic MDH isozyme, and it has been demonstrated recently that the pair of isozymes found in teleosts results from a gene duplication sometime after the separation of teleosts and tetrapods, although the exact timing of this duplication has not been inferred. Phylogenetic analyses suggest that the duplication of teleost isozymes occurred during the radiation of actinopterygian fish, consistent with the timing of duplication at other loci. Using inferred amino acid sequences, we examine the pattern of change following the duplication and across the rest of the MDH gene tree. Comparison between the MDH gene family and another gene family that shows a larger charge differential among members (triosephosphate isomerase) indicates that the smaller charge difference between MDH isozymes is best explained by greater constraint on amino acid change directly following the duplication, not greater constraint across the entire gene tree. This difference in constraint might result from the wider pattern of expression of the “neural” MDH isozyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号