首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the hepatic uptake of retinol bound to the circulating retinol binding protein-transthyretin complex. Labeled complex was obtained from the plasma of donor rats that were fed radioactive retinol. When labeled retinol-retinol binding protein-transthyretin complex was injected intravenously into control rats, about 45% of the administered dose was recovered in liver after 56 h. Parenchymal liver cells were responsible for an initial rapid uptake. Perisinusoidal stellate cells initially accumulated radioactivity more slowly than did the parenchymal cells, but after 16 h, these cells contained more radioactivity than the parenchymal cells. After 56 h, about 70% of the radioactivity recovered in liver was present in stellate cells. For the first 2 h after injection, most of the radioactivity in parenchymal cells was recovered as unesterified retinol. The radioactivity in the retinyl ester fraction increased after a lag period of about 2 h, and after 5 h more than 60% of the radioactivity was recovered as retinyl esters. In stellate cells, radioactivity was mostly present as retinyl esters at all time points examined. Uptake of retinol in both parenchymal cells and stellate cells was reduced considerably in vitamin A-deficient rats. Less than 5% of the injected dose of radioactivity was found in liver after 5-6 h (as compared to 25% in control rats), and the radioactivity recovered in liver from these animals was mostly in the unesterified retinol fraction. Studies with separated cells in vitro suggested that both parenchymal and stellate cells isolated from control rats were able to take up retinol from the retinol-retinol binding protein-transthyretin complex. This uptake was temperature dependent.  相似文献   

2.
Parenchymal and nonparenchymal cells were isolated from perfused rat livers and incubated at 37 degrees C in the absence and presence of ethanol (50 mM). 1. Nonparenchymal cells prepared by means of centrifugation showed a higher rate of incorporation of L-[U-14C]valine into protein than nonparenchymal cells prepared by means of pronase. Cells prepared by the former method were used for further studies. 2. Protein degradation was present in suspensions of both parenchymal and nonparenchymal cells evidenced by increasing levels of branched amino acids in the intracellular and extracellular compartment during cell incubation. 3. The rate of cellular protein synthesis (corrected for precursor pool specific radioactivity) was of the same order of magnitude in nonparenchymal and parenchymal cells when expressed as nmol valine incorporated per mg protein. This rate was also close to the value found in intact liver by other workers. 4. Approximately 25% of the total radioactivity incorporated during incubation for 2 h was found in proteins released to the medium from parenchymal cells, while the corresponding figure for nonparenchymal cells was 3.5%. 5. Ethanol inhibited incorporation of labelled valine into stationary and medium proteins of parenchymal cells. No such effects were found in nonparenchymal cells. 6. Nonparenchymal cells did not metabolize ethanol while parenchymal cells did, shown by changes in lactate/pyruvate ratio and medium pH. It was concluded that nonparenchymal cells are capable of synthesizing proteins at a rate comparable to that found in parenchymal cells. Protein synthesis in parenchymal cells was inhibited by ethanol, but nonparenchymal protein synthesis was unaffected. This difference may be linked to the ability of the former cell type to metabolize ethanol.  相似文献   

3.
A triantennary galactose-terminated cholesterol derivative, N-(tris(beta-D-galactopyranosyloxymethyl) methyl)-N alpha-(4(5-cholesten-3 beta-yloxy)succinyl)glycinamide (Tris-Gal-Chol), which dissolves easily in water, was added to human apolipoprotein E-free high density lipoproteins (HDL) in varying quantities. Incorporation of 5 or 13 micrograms of Tris-Gal-Chol into HDL (20 micrograms of protein) stimulates the liver association of the HDL apoprotein radioactivity 24- and 55-fold, respectively, at 10 min after intravenous injection into rats. The increased interaction of Tris-Gal-Chol HDL with the liver is blocked by preinjection of asialofetuin or N-acetylgalactosamine but not influenced by N-acetylglucosamine. The parenchymal liver cell uptake of HDL is stimulated 42- or 105-fold, respectively, by incorporation of 5 or 13 micrograms of Tris-Gal-Chol into HDL (20 micrograms of protein), while the association with nonparenchymal cells is stimulated only 1.7- or 5-fold. It can be calculated that 98.0% of the Tris-Gal-Chol HDL is associated with parenchymal cells. In contrast, incorporation of 13 micrograms of Tris-Gal-Chol into LDL (20 micrograms of protein) leads to a selective association of LDL with nonparenchymal cells (92.3% of the total liver uptake). It is concluded that Tris-Gal-Chol incorporation into HDL leads to a specific interaction of HDL with the asialoglycoprotein (galactose) receptor on parenchymal cells whereas Tris-Gal-Chol incorporation into LDL leads mainly to an interaction with a galactose receptor from Kupffer cells. Probably this highly selective cellular targeting of LDL and HDL by Tris-Gal-Chol is caused by the difference in size between these lipoproteins. The increased interaction of HDL with the parenchymal cells upon Tris-Gal-Chol incorporation is followed by degradation of the apolipoprotein in the lysosomes. It is concluded that Tris-Gal-Chol incorporation into LDL or HDL leads to a markedly increased catabolism of LDL by way of the Kupffer cells and HDL by parenchymal cells which might be used for lowering serum cholesterol levels. The use of Tris-Gal-Chol might also find application for targeting drugs or other compounds of interest to either Kupffer or parenchymal liver cells.  相似文献   

4.
The relative contribution of the parenchymal and nonparenchymal rat liver cells to the hepatic uptake of human and rat high density lipoprotein (HDL) and low density lipoprotein (LDL) was determined in vivo. Nonparenchymal cells, isolated 6 h after intravenous injection of iodinated human HDL and LDL, contained respectively 4.2 and 6.3 times the amount of trichloroacetic acid-precipitable radioactivity per mg cell protein as compared to parenchymal cells. For rat iodinated HDL and LDL these factors were 3.4 and 4.1, respectively. These results indicate that nonparenchymal liver cells play a substantial role in the hepatic uptake of human and rat HDL and LDL in vivo.  相似文献   

5.
The serum clearance of alpha-[3H]tocopherol has been studied after intravenous injection of intestinal lymph labeled in vivo with radioactive alpha-tocopherol. The half-life of the injected alpha-[3H]tocopherol was approx. 12 min. Fractionation of plasma by ultracentrifugation 10 min after injection of lymph showed that 91% of the radioactive alpha-tocopherol remaining in plasma was located in chylomicrons (d less than 1.006 g/ml) and 7.8% in high-density lipoproteins (HDL, 1.05 less than d less than 1.21 g/ml). 2 h after administration of alpha-tocopherol, about 35% of the radioactivity recovered in plasma was associated with chylomicrons and approx. 51% with HDLs. alpha-[3H]Tocopherol was initially taken up by the liver, which contained more than 50% of the injected radioactivity after 45-60 min. Separation of parenchymal and nonparenchymal cells demonstrated a preferential uptake of alpha-[3H]tocopherol by the parenchymal liver cells. After 24 h about 11% of the injected dose was recovered in the liver. Considering whole organs the liver, adipose tissue and skeletal muscle had the highest content of radioactivity after 24 h. Furthermore, about 14% of the administered dose was recovered in bile during 24 h draining.  相似文献   

6.
We have studied uptake of retinol-binding protein (RBP) by rat liver cells. First, we compared the in vivo uptake in different liver cells of 125I-labeled RBP with that of other well-known ligands. We found that the ligands studied were recognized differently by the various cell types in the liver, and that RBP was most efficiently taken up by parenchymal and stellate cells. We then studied the in vivo uptake of RBP in liver cells by immunocytochemistry at the electron microscopic level using ultrathin cryosections. Ten min after injection, RBP was localized to parenchymal cells and stellate cells. In these cells, RBP was detected on the cell surface and in vesicles near the cell surface. RBP was observed mainly in association with the membrane in these vesicles. Two hours after injection, RBP was localized not only on the cell surface and in vesicles close to the cell surface, but also in larger vesicles located deeper in the cytoplasm of these cells. RBP in larger vesicles was observed at a distance from the vesicular membrane. Finally, we compared the distribution of endocytosed RBP in liver parenchymal cells with that of asialo-orosomucoid, a ligand known to be internalized by receptor-mediated endocytosis. We detected both ligands on the cell surface and in small vesicles located close to the cell surface and in larger vesicles located deeper in the cytoplasm. Asialo-orosomucoid and RBP were seldom observed in the same small vesicles, but the larger vesicles contained both ligands. These data suggest that RBP is internalized in parenchymal and stellate cells of the liver by receptor-mediated endocytosis.  相似文献   

7.
We have studied the mechanism for mobilization of retinol from stellate cells. Our data show that perisinusoidal stellate cells isolated from liver contained retinol-binding protein (RBP) mRNA. By Western blot analysis we found that cultivated liver stellate cells secreted RBP into the medium. Cultivated stellate cells loaded in vitro with [3H]retinyl ester mobilized radioactive retinol as a complex with RBP. Furthermore, exogenous RBP added to the medium of cultured stellate cells increased the secretion of retinol to the medium. These data suggest that liver stellate cells in vivo mobilize retinol directly to the blood and that a transfer to parenchymal cells for secretion as holo-RBP is not required. The direct mobilization of retinol from liver stellate cells as retinol-RBP to blood is indirectly supported by the demonstration of RBP mRNA production and RBP secretion by lung stellate cells. The data suggest that the same mechanism for retinol mobilization may exist in hepatic and extrahepatic stellate cells. This is, vitamin A-storing stellate cells in liver, lungs, and probably also in other organs may synthesize their own RBP (or alternatively use exogenous RBP) and mobilize holo-RBP directly to the blood.  相似文献   

8.
DNA synthesis of adult rat parenchymal hepatocytes alone in primary culture can be stimulated only by the addition of humoral growth factors to the culture medium. However, when parenchymal hepatocytes were cocultured with nonparenchymal liver cells from adult rats, their DNA synthesis was markedly stimulated in the absence of added growth factors or calf serum. DNA synthesis of parenchymal hepatocytes was not stimulated by conditioned medium from nonparenchymal liver cells and was greatest when the parenchymal cells were plated on 24-h cultures of nonparenchymal liver cells. A dead feeder layer of nonparenchymal cells was almost as effective as a feeder layer of viable nonparenchymal cells. These results suggest that the stimulation of DNA synthesis in parenchymal hepatocytes was not due to some soluble factors secreted by nonparenchymal liver cells but to an insoluble material(s) produced by the nonparenchymal liver cells. This insoluble material(s) was collagenase- and acid-sensitive, suggesting that it was a protein containing collagen. The effect of nonparenchymal liver cells was specific: coculture with hepatoma cells, liver epithelial cells, or Swiss 3T3 cells did not stimulate DNA synthesis in parenchymal hepatocytes. Added insulin and epidermal growth factor showed additive effects with nonparenchymal cells in the cocultures. These results suggest that DNA synthesis in parenchymal hepatocytes is stimulated not only by various humoral growth factors but also by cell-cell interaction between parenchymal and nonparenchymal hepatocytes, possibly endothelial cells. This cell-cell interaction may be important in repair of liver damage and liver regeneration.  相似文献   

9.
The role of liver endothelial and Kupffer cells in the hepatic uptake of cholesterol-rich low density lipoprotein (LDL) was studied in rabbits fed a diet containing 2% (w/w) cholesterol for 3 weeks. 125I-labeled tyramine cellobiose-labeled cholesterol-rich LDL was injected intravenously into rabbits, and parenchymal and nonparenchymal liver cells were isolated 24 h after injection. The hepatic uptake was 9 +/- 3% of injected dose in cholesterol-fed rabbits 24 h after injection, as compared to 36 +/- 9% in control-fed rabbits (n = 6 in each group; significant difference, P less than 0.005). Endothelial and Kupffer cells took up 2.7 +/- 0.5% and 1.2 +/- 0.8% of injected dose in the hypercholesterolemic rabbits, as compared to 1.9 +/- 0.8% and 0.8 +/- 0.3% in control animals. The amount accounted for by the parenchymal cells was markedly reduced in the cholesterol-fed rabbits to 7.3 +/- 2.7% of injected dose, as compared to 32.8 +/- 7.6% in controls (P less than 0.02). On a per cell basis, the nonparenchymal cells of cholesterol-fed rabbits took up as much LDL as the parenchymal cells (0.6 +/- 0.2, 0.7 +/- 0.1, and 0.6 +/- 0.4% of injected dose per 10(9) parenchymal, endothelial, and Kupffer cells, respectively). This is in marked contrast to the control animals, in which parenchymal cells took up about 6 times more LDL per cell than endothelial and Kupffer cells (3.2 +/- 0.9, 0.7 +/- 0.3, and 0.5 +/- 0.1% of injected dose per 10(9) cells). Thus, 30% of the hepatic uptake of LDL in the cholesterol-fed rabbits took place in nonparenchymal cells, as compared to 6% in controls. Consistent with these data, the concentrations of cholesteryl ester in endothelial and Kupffer cells in rabbits fed the high cholesterol diet were about twofold higher than in parenchymal cells (428 +/- 74 and 508 +/- 125 micrograms/mg protein, respectively, vs. 221 +/- 24 micrograms/mg protein in parenchymal cells). In contrast to cells from normal rabbits, Kupffer and endothelial cells from cholesterol-fed rabbits accumulated significant amounts of Oil Red O-positive material (neutral lipids). Electron microscopic examination of these cells in situ as well as in culture revealed numerous intracellular lipid droplets. Slot blot hybridization of RNA from liver parenchymal, endothelial, and Kupffer cells showed that cholesterol feeding reduced the level of mRNA specific for the apoB,E receptor to a small and insignificant extent in all three cell types (to 70-80% of that observed in control animals).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Adenovirus-mediated gene transfer has become an important tool with which to introduce genetic material into cells. Available data emphasize efficient adenoviral transduction of parenchymal liver cells (i.e., hepatocytes) in both in vitro and in vivo model systems, typically in normal cells. The aim of this study was to evaluate gene transfer to nonparenchymal (and parenchymal) cells of the normal and injured rat liver. Hepatocytes, stellate cells, and endothelial cells were isolated by standard methods. Liver injury was induced by bile duct ligation or carbon tetrachloride administration. Cells were transduced in vitro with an adenovirus encoding beta-galactosidase (Ad.beta-gal) over a range of viral titers, and transduced cells were identified by detection of X-gal. In vivo transduction efficiency was studied in normal and injured livers using cell isolation techniques. Nonparenchymal cells were transduced with greater frequency than hepatocytes at all adenoviral titers tested, both in vitro and in vivo. After liver injury, adenoviral transduction was reduced for all liver cell types compared with that for cells from normal livers (at all virus titers). Notably, transduction efficiency remained greater in nonparenchymal cells than in hepatocytes after liver injury. This work implies that, to achieve comparable gene expression in the injured liver, higher adenoviral titers may be required, an important consideration as gene therapy in disease states is considered.  相似文献   

11.
The aim of this study was to quantify the abilities of mouse liver parenchymal and nonparenchymal cells with respect to (i) cholesteryl ester (CE) selective uptake from low-density lipoproteins (LDL), oxidized LDL (OxLDL), and high-density lipoprotein (HDL); and (ii) their free cholesterol efflux to HDL. The preparations of cells were incubated with lipoproteins labelled either in protein with iodine-125 or in CE with 3H-cholesterol oleate, and lipoprotein-protein and lipoprotein-CE associations were measured. The associations of LDL-protein and LDL-CE with nonparenchymal cells were 5- and 2-fold greater, respectively, than with parenchymal cells. However, in terms of CE-selective uptake (CE association minus protein association) both types of cell were equivalent. Similar results were obtained with OxLDL, but both types of cell showed higher abilities in OxLDL-CE than in LDL-CE selective uptake (on average by 3.4-fold). The association of HDL-protein with nonparenchymal cells was 3x that with parenchymal cells; however, nonparenchymal cells associated 45% less HDL-CE. Contrary to parenchymal cells, nonparenchymal cells did not show HDL-CE selective uptake activity. Thus parenchymal cells selectively take CE from the 3 types of lipoproteins, whereas nonparenchymal cells exert this function only on LDL and OxLDL. Efflux was 3.5-fold more important in nonparenchymal than in parenchymal cells.  相似文献   

12.
The cell number as well as the hexokinase and glucokinase activity of liver parenchymal and nonparenchymal cells were studied in methapyrilene treated rats. The number of nonparenchymal cells was doubled after treatment with methapyrilene for two weeks while that of hepatocytes remained constant. The hexokinase activity was increased fourfold in the nonparenchymal cell fraction while it was unchanged in the parenchymal cells. The glucokinase activity was decreased in the hepatocytes to one third. Hence, the increased hexokinase activity was due to a proliferation of nonparenchymal cells rather than to a toxic dedifferentiation of hepatocytes.  相似文献   

13.
Yeast invertase injected intravenously in rats is rapidly taken up by the liver, reaching levels in that organ of 20% or more of the injected dose in about 12 h. At early time points, the bulk of the liver invertase appears in the sedimentable homogenates but, with time, there is a progressive increase in the fraction in the soluble phase, which remains at a constant proportion as the total hepatic invertase declines. The uptake of polyvinylpyrrolidone by the liver is much slower, as is its redistribution to the soluble fraction of homogenates. Separation of cell types from livers containing the markers revealed that the invertase was almost exclusively in the nonparenchymal cell population, while polyvinylpyrrolidone was distributed relatively indiscriminately between parenchymal and nonparenchymal cells. Measurements of uptake of invertase by liver cell preparations in vitro confirmed that nonparenchymal cells were much more active than parenchymal cells in this regard. Furthermore, the process was saturable with the former cell types and inhibitable by α-methylmannoside. Thus, it may be concluded that the uptake of invertase is via fluid pinocytosis in parenchymal cells and adsorptive pinocytosis in the nonparenchymal cells.  相似文献   

14.
Intact and pure parenchymal and nonparenchymal cells were isolated from rat liver. The activities of Superoxide dismutase in these cell types were determined by two different methods. With both methods the specific activity of this enzyme is 1.5 times higher in parenchymal than in nonparenchymal liver cells. It can be calculated that about 7% of the total rat liver Superoxide dismutase activity is localized in the nonparenchymal liver cells. Electrophoresis on polyacrylamide gels indicates that the isolated parenchymal cells contain both cytosolic and mitochondrial isoenzymes, whereas with nonparenchymal cells only the cytosolic enzyme could be detected. The mitochondrial band observed in isolated parenchymal cells is absent in the original total liver homogenate. This isoenzyme seems to be activated during the parenchymal cell isolation procedure. Isoelectrofocusing indicates that the cytosolic Superoxide dismutase consists in four different isoelectric forms in both parenchymal and nonparenchymal cells. With the mitochondrial isoenzyme two bands are obtained. The possibility that O2? is an important intermediate in H2O2 formation in nonparenchymal liver cells is discussed. In this respect, Superoxide dismutase might not only protect the cell against a toxic reagent as O2t-, but might also help to regulate the level of the important antimicrobial agent, H2O2.  相似文献   

15.
Chronic ethanol consumption reduces the liver retinoid store in man and rat. We have studied the effect of ethanol on some aspects of retinoid metabolism in parenchymal and nonparenchymal liver cells. Rats fed 36% of total energy intake as ethanol for 5-6 weeks had the liver retinoid concentration reduced to about one-third, as compared to pair-fed controls. The reduction in liver retinoid affected both the parenchymal and the nonparenchymal cell fractions. Plasma retinol level was normal. Liver uptake of injected chylomicron [3H]retinyl ester was similar in the experimental and control group. The transport of retinoid from the parenchymal to the nonparenchymal cells was not found to be significantly retarded in the ethanol-fed rats. Despite the reduction in total retinoid level in liver, the concentrations of unesterified retinol and retinyl oleate were increased in the ethanol fed rats. Hepatic retinol esterification was not significantly affected in the ethanol-fed rats. Since our study has demonstrated that liver uptake of chylomicron retinyl ester is not impaired in the ethanol-fed rat, we suggest that liver retinoid metabolism may be increased.  相似文献   

16.
The main retinoids and some binding proteins and enzymes involved in retinol metabolism have been quantified in different types of rat liver cells. Hepatic perisinusoidal stellate cells contained 28-34 nmol of retinoids/10(6) cells, and parenchymal liver cells contained 0.5-0.8 nmol of retinoids/10(6) cells, suggesting that as much as 80% of more of total liver retinoids might be stored in stellate cells with the rest stored in parenchymal cells. Isolated endothelial cells and Kupffer cells contained very low levels of retinoids. More than 98% of the retinoids recovered in stellate cells were retinyl esters. Isolated parenchymal and stellate cell preparations both contained considerable retinyl palmitate hydrolase and acyl-CoA:retinol acyltransferase activities. Parenchymal cells accounted for about 75-80% of the total hepatic content of these two enzyme activities, with the rest located in stellate cells. On a cell protein basis, the concentrations of both of these activities were much greater in stellate cells than in parenchymal cells. In contrast, cholesteryl oleate and triolein hydrolase activities were fairly evenly distributed in all types of liver cells. Large amounts of cellular retinol binding proteins were also found in parenchymal and stellate cells. Although parenchymal cells accounted for more than 90% of hepatic cellular retinol binding protein, the concentration of the protein in stellate cells (per unit protein) was 22 X greater than that in parenchymal cells. Stellate cells were also enriched in cellular retinoic acid binding protein. Thus, both parenchymal and stellate cells contain substantial amounts of retinoids and of the enzymes and intracellular binding proteins involved in retinol metabolism. Stellate cells are particularly enriched in these several components.  相似文献   

17.
Previous studies showed that 90% or more of the cholesteryl ester transfer protein (CETP) mRNA is contained in the liver of cynomolgus monkeys. The purpose of this study was to determine if the parenchymal cells (hepatocytes) were the hepatic cell type that contained that mRNA. The parenchymal and nonparenchymal cells were separated by standard methods, and the CETP, apoA-I, apoB, and apoE mRNA content of the preparation determined at each step in the purification process. ApoA-I and apoB are produced only in the parenchymal cells; apoE is produced by both cell types. The mRNA measurements showed that the CETP mRNA: apoA-I mRNA and the CETP mRNA: apoB mRNA ratios were more than 2500-fold greater in the nonparenchymal cell preparation than in the starting material, and that the purified parenchymal cell fraction was virtually devoid of CETP mRNA. In situ hybridization studies showed that, whereas the apoA-I mRNA signal was evenly distributed over the tissue section, the CETP mRNA signal was associated with the hepatic sinusoids, suggesting that it was the hepatic sinusoidal cells that were principally responsible for the high CETP mRNA levels in the liver. We conclude that the nonparenchymal cells are the principal source of CETP in the cynomolgus monkey.  相似文献   

18.
Very low density lipoprotein (VLDL)-remnants, prepared by extrahepatic circulation of VLDL, labeled biosynthetically in the cholesterol (ester) moiety, were injected intravenously into rats in order to determine the relative contribution of parenchymal and non-parenchymal liver cells to the hepatic uptake of VLDL-remnant cholesterol (esters). 82.7% of the injected radioactivity is present in liver, measured 30 min after injection. The non-parenchymal liver cells contain 3.1±0.1 times the amount of radioactivity per mg cell protein as compared to parenchymal cells. The hepatic uptake of biosynthetically labeled (screened) low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterolesters amounts to 26.8% and 24.4% of the injected dose, measured 6 h after injection. The non-parenchymal cells contain 4.3±0.8 and 4.1±0.7 times the amount of radioactivity per mg cell protein as compared to parenchymal cells for LDL and HDL, respectively. It is concluded that in addition to parenchymal cells, the non-parenchymal cells play an important role in the hepatic uptake of cholesterolesters from VLDL-remnants, LDL and HDL.  相似文献   

19.
In normal rat liver, anaphylatoxin C5a receptors (C5aR) are only expressed by nonparenchymal cells, mainly Kupffer cells and hepatic stellate cells, but not by parenchymal cells, i.e., hepatocytes (HC). Nevertheless, C5a stimulates glucose output by HC. This HC-specific defense reaction is induced indirectly via prostanoids secreted by the C5aR-expressing Kupffer cells and hepatic stellate cells. It is shown here that under inflammatory conditions simulated by in vivo treatment of rats with IL-6 C5aR mRNA and protein were induced in HC in a time-dependent manner. Maximal mRNA and protein expression were observed at 4-8 h and 8-10 h, respectively, after IL-6 injection. The newly expressed receptors were functional, because recombinant rat C5a significantly activated glycogen phosphorylase in HC isolated from IL-6-treated but not in HC from control rats. In perfused livers of IL-6-treated animals in contrast to control animals, recombinant rat C5a-induced glucose output was not impaired by inhibition of prostanoid synthesis and function with the cyclooxygenase inhibitor indomethacin and the thromboxane receptor antagonist daltroban. These results indicate that HC-specific defense reactions might be differently regulated under normal and inflammatory conditions as shown here for the indirect prostanoid-dependent or direct C5a-induced activation of hepatocellular glycogen phyosphorylase and glucose output in control or IL-6-treated rats, respectively.  相似文献   

20.
The levels of retinoids, retinol-binding protein, cellular retinol-binding protein, cellular retinoic-acid-binding protein, transthyretin and the activities of retinyl palmitate hydrolase and cholesteryl oleate hydrolase were determined in purified parenchymal, fat-storing, endothelial and Kupffer cell preparations, and in liver homogenates from young adult (6-month-old) and old (36-month-old) rats. Retinoid levels were also determined in the plasma from young and old rats. Retinoid contents were determined by HPLC. The binding proteins and transthyretin were measured by specific radioimmunoassays; retinyl palmitate and cholesterol oleate hydrolases were measured by sensitive microassays. The retinoid content of both the liver homogenates and of the fat-storing, and parenchymal cell preparations increased between 6 months and 36 months of age. The cellular distribution of retinoids was similar for the two age groups analyzed with the fat-storing cells being the main retinoid storage sites in the rat liver. Concentrations of retinol-binding protein and transthyretin were high in parenchymal cell preparations. Cellular retinol-binding protein was enriched both in parenchymal and in fat-storing cell preparations; the highest concentrations of cellular retinoic-acid-binding protein were present in fat-storing cell preparations. No major differences were observed between the two age groups in the cellular concentrations and distributions of any of these binding proteins. High activity of cholesterol oleate hydrolase was measured in parenchymal and in Kupffer cell preparations; endothelial cell preparations also contained considerable activities. The distribution of this activity over the various cell types reflects their role in lipoprotein metabolism. Retinyl palmitate hydrolase activity was specifically enriched in parenchymal and in fat-storing cell preparations, consistent with the roles of these cells in retinoid metabolism. No major differences were observed between the two age groups in the cellular distributions of the two hydrolase activities. This study indicates that no major changes occur in the retinoid-related parameters analyzed with age, suggesting that rat liver retinoid metabolism does not change dramatically with age and that retinoid homeostasis is maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号