首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human myelin basic protein isolated from the brains of individuals who died with multiple sclerosis was more potent in inducing the aggregation of egg phosphatidylcholine vesicles than was the basic protein isolated from the brains of normal individuals. The portion of myelin basic protein which bound to egg phosphatidylcholine vesicles was separated from the free protein by sucrose density gradient centrifugation. Similar amounts of basic protein from normal or from multiple sclerosis brains are bound to the lipid and no consistent differences in the NG, NG dimethyl-arginine content of the protein fractions have been found.  相似文献   

2.
When mixed with vesicles containing acidic phospholipids, myelin basic protein causes vesicle aggregation. The kinetics of this vesicle cross-linking by myelin basic protein was investigated by using stopped-flow light scattering. The process was highly cooperative, requiring about 20 protein molecules per vesicle to produce a measurable aggregation rate and about 35 protein molecules per vesicle to produce the maximum rate. The maximum aggregation rate constant approached the theoretical vesicle-vesicle collisional rate constant. Vesicle aggregation was second order in vesicle concentration and was much slower than protein-vesicle interaction. The highest myelin basic protein concentration used here did not inhibit vesicle aggregation, indicating that vesicle cross-linking occurred through protein-protein interactions. In contrast, poly(L-lysine)-induced vesicle aggregation was easily inhibited by increasing peptide concentrations, indicating that it did cross-link vesicles as a peptide monomer. The myelin basic protein:vesicle stoichiometry required for aggregation and the low affinity for protein dimerization suggested that multiple protein cross-links were needed to form a stable aggregate. Stopped-flow fluorescence was used to estimate the kinetics of myelin basic protein-vesicle binding. The half-times obtained suggested a rate constant that approached the theoretical protein-vesicle collisional rate constant.  相似文献   

3.
Myelin basic protein derived from bovine spinal cord has been interacted with liposomes of varying brain lipid compositions. The effects of salt and protein concentration on liposome cross linking has been investigated. It appears that myelin basic protein cannot link liposomes composed of brain-derived phosphatidyl choline. Myelin basic protein can link liposomes composed of phosphatidyl serine; phosphatidyl serine + cholesterol; phosphatidyl serine + cholesterol + cerebroside sulphate. Linking of liposomes occurs at protein concentrations lower than those required for myelin basic protein dimers to be formed. Therefore, it seems that the monomeric form of myelin basic protein links lipid bilayers. The presence of cholesterol in the bilayer increases the ability of myelin basic protein to aggregate such liposomes compared with the linking ability of the polycationic polypeptide, poly-l-lysine.  相似文献   

4.
The two most basic charge isomers of myelin basic protein (BP), components 1 and 2 (C1 and C2), which presumably differ in the degree of deamidation, were purified from bovine BP by cation-exchange chromatography. Two additional specific types of posttranslational modifications were introduced into the purified isomers: (1) C-terminal arginine deficient derivatives of C1 and C2 were prepared by incubating the isomers with a carboxypeptidase, and (2) phosphorylated derivatives of C1 (1.6 and 1.7 mol of phosphate/mol of protein) were prepared by incubating C1 with the protein kinase from rabbit muscle. The ability of these charge isomers to increase the permeability of multilamellar vesicles composed of phosphatidylserine/phosphatidylcholine (1:11.5 w/w) and sphingomyelin/cholesterol/phosphatidic acid (1:1:0.2 w/w/w) was measured by monitoring the release of a water-soluble spin-label (tempocholine chloride) from the vesicles. The increase in vesicle permeability caused by BP was taken as a measure of the degree of perturbation of the bilayer by the protein, most likely by penetration partly into the bilayer. All classes of charge isomers (naturally occurring or generated in vitro) were more effective at increasing vesicle permeability than was poly(L-lysine), a polycation that only interacts electrostatically with the bilayer. Although C1 and C2 and their C-terminal-deficient derivatives did not differ in the amount of marker released, the phosphorylated derivative of C1 caused a smaller increase in vesicle permeability than did the other isomers, suggesting that phosphorylation had altered the ability of the protein to perturb the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Experimental allergic encephalomyelitis (EAE), an experimental autoimmune disease of the central nervous system (CNS), is readily induced in many mammalian species by immunization with CNS tissue or myelin basic protein (MBP) purified from the CNS. EAE has been frequently used as a model for multiple sclerosis (MS). However, EAE generally presents as an acute monophasic disease in the adult animal after immunization with MBP. After recovery, the animal is resistant to rechallenge with encephalitogen (1). Two exceptions to these observations have been reported. McFarlin et al. (2) reported that a variable number of Lewis rats showed signs of a single, mild relapse about a week after recovery from MBP-induced acute EAE. Panitch and Ciccone (3) have reported induction of recurrent EAE in rats immunized with human MBP. Chronic, relapsing EAE has been induced in the mouse; however, an apparent requirement for CNS tissue had been noted (4, 5). Recently, during the course of a series of experiments on the induction of EAE in SJL/J, PL/J, and (SJL/J X PL/J)F1 (SPL F1) mice, it was observed that the F1 mice frequently had paralytic relapses after recovery from MBP-induced symptoms. Experiments were initiated to examine this phenomenon, and the findings are presented below.  相似文献   

6.
Phosphorylation of myelin basic protein   总被引:15,自引:0,他引:15  
  相似文献   

7.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1989,28(25):9685-9691
Electron spin resonance (ESR) spectroscopy and chemical binding assays were used to study the interaction of bovine spinal cord myelin basic protein (MBP) with dimyristoylphosphatidylglycerol (DMPG) membranes. Increasing binding of MBP to DMPG bilayers resulted in an increasing motional restriction of PG spin-labeled at the C-5 atom position in the acyl chain, up to a maximum degree of association of 1 MBP molecule per 36 lipid molecules. ESR spectra of PG spin-labels labeled at other positions in the sn-2 chain showed a similar motional restriction, while still preserving the chain flexibility gradient characteristic of fluid lipid bilayers. In addition, labels at the C-12 and C-14 atom positions gave two-component spectra, suggesting a partial hydrophobic penetration of the MBP into the bilayer. Spectral subtractions were used to quantitate the membrane penetration in terms of the stoichiometry of the lipid-protein complexes. Approximately 50% of the spin-labeled lipid chains were directly affected at saturation protein binding. The salt and pH dependence of the ESR spectra and of the protein binding demonstrated that electrostatic interaction of the basic residues of the MBP with the PG headgroups is necessary for an effective association of the MBP with phospholipid bilayers. Binding of the protein, and concomitant perturbation of the lipid chain mobility, was reduced as the ionic strength increased, until at salt concentrations above 1 M NaCl the protein was no longer bound. The binding and ESR spectral perturbation also decreased as the protein charge was reduced by pH titration to above the pI of the protein at approximately pH 10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
D-aspartic acid in purified myelin and myelin basic protein   总被引:4,自引:0,他引:4  
The presence of the biologically uncommon D-isomer of aspartic acid in the white matter of human brains has been reported previously from this laboratory (1). We now report that the level of D-aspartate in human brains is higher in purified myelin than in white matter and is even higher in the myelin basic protein fraction. There also appears to be a difference in the level of D-aspartate found in human brain as compared to bovine brain, possibly a species or age-related difference.  相似文献   

9.
Microheterogeneity of guinea pig myelin basic protein   总被引:5,自引:0,他引:5  
  相似文献   

10.
The effect of glycosphingolipids (GSLs) with oligosaccharide chains of different length and charge on membrane-membrane interactions induced by myelin basic protein (MBP) or melittin (Mel) was comparatively investigated with small unilamellar vesicles. MBP induces a fast vesicle aggregation and close membrane apposition. Merging of lipid bilayers and vesicle fusion induced by MBP are slower and less extensive processes compared to membrane apposition. The changes of membrane permeability concomitant to these phenomena are small. The Trp region of MBP remains in a rather polar environment when interacting with vesicles; its accessibility to NO3- or acrylamide quenching depends on the type of GSLs in the membrane. The Trp region of Mel is inserted more deeply into the lipid bilayer and its accessibility to the aqueous quenchers is less dependent on variations of the oligosaccharide chain of the GSLs. Mel induces a faster and more extensive membrane apposition and bilayer merging than does MBP. Extensive vesicle disruption occurs in the presence of Mel. Negatively charged GSLs facilitate membrane proximity and vesicle aggregation but an increase of the oligosaccharide chain length of either neutral or acidic GSLs decreases the interaction among vesicles that are induced by either protein. This effect is independent of the different mode of insertion of MBP and Mel into the membrane. Our results suggest that the modulation by the oligosaccharide chain on the protein-induced interactions between bilayers containing GSLs is probably exerted beyond the level of local molecular interactions between the basic proteins and the lipids.  相似文献   

11.
12.
Isolated rat brain myelin when incubated with γ32P labelled ATP yields proteins bearing acid labile, base stable phosphoryl groups. Phosphorylated myelin basic protein can be isolated and degraded with trypsin and pronase to yield principally phosphoarginine and phosphohistidine. Only a very small amount of phosphorerine survives the base treatment used in the isolation procedure.  相似文献   

13.
The basic protein of bovine central nervous system myelin contains a single polypeptide chain of 170 amino acids. Multiple components of basic protein have been observed on disc gel electrophoresis and ion exchange chromatography at alkaline pH, but the basis of the microheterogeneity has not been established. In the present study myelin basic protein from bovine spinal cord was chromatographed on carboxymethylcellulose at pH 10.4 in glycine buffer/2 M urea. Three major peaks were obtained, identified as components 4, 5, and 6 in the oder of their elution from the column by a linear salt gradient. The amino acid compositions of tryptic peptides from components 4 and 6 were identical and the COOH-terminal sequence, Ala-Arg-Arg, was intact for all three components. Component 4 was found to differ from component 6 by partial phosphorylation of threonine 98 and serine 165. This modification was estimated to account for 50% of component 4. Component 5 differed from component 6 by partial deamidation of glutamine residues 103 and 147, which accounted for 80% of this component. These modified glutamine residues were also present in component 4 and constituted another 15% of this component. It was considered that component 6 was the native, unmodified species of basic protein and that component 4 differed by a net negative charge of 2, and component 5 by a net negative charge of.1 as a result of these modifications. The nonrandom nature of the modifications suggested the involvement of specific enzymes.  相似文献   

14.
A procedure for large scale isolation of myelin basic protein (BP) has been modified to insure BP preparations free of neutral proteinase activity. Fractions were monitored by electrophoretic analysis of BP solutions incubated under various conditions of temperature and pH. Maximum degradation of human BP prepared by the old batch procedure occurs at pH 7, 47°C. BP preparations obtained by the new procedure, as well as BP preparations purified by CM-cellulose chromatography, are stable under these conditions. The latter, however, do undergo significant breakdown at pH 9, 100°C. The results suggest that the degradation observed under these conditions is non-enzymatic in nature.Special Issue dedicated to Dr. Elizabeth Roboz-Einstein.  相似文献   

15.
Z2+ appears to stabilize the myelin sheath but the mechanism of this effect is unknown. In a previous report we have shown that zinc binds to CNS myelin basic protein (MBP) in the presence of phosphate and this results in MBP aggregation. For this paper we used a solid phase zinc blotting assay to identify which myelin proteins bind zinc. MBP and a 58 kDa band were found to be the major targets of65Zn binding. Moreover, using fluorescence, light scattering and electron microscopy we investigated the binding of zinc and other cations to purified MBP in solution. Among the cations tested for their ability to interfere with the binding of zinc, the most effective were cadmium, mercury and copper, but only cadmium and mercury increased the scattering intensity, whereas MBP aggregation was not inhibited by copper ions. Thus, the effect of zinc on the formation of MBP clusters seems to be specific.  相似文献   

16.
The participation of terminal complement complexes (TCC) in demyelination has been shown in rodent cerebellar cultures. Since TCC modulates activities of various membrane-associated enzymes and increases the level of cellular Ca2+ we investigated whether TCC could activate Ca2+-dependent neutral proteases in myelin that would lead to hydrolysis of myelin basic protein (BP). Addition of antibody and C7-deficient serum plus C7 to sealed myelin vesicles of two to six bilayers caused significant BP hydrolysis compared to the hydrolysis caused by antibody and C7-deficient serum. Significant hydrolysis occurred at the stage of C5b6,7 assembly, which increased in magnitude at the C5b6-8 stage. C5b6-9 formation did not enhance the effect of C5b6-8. BP hydrolysis by C5b6,7 did not require Ca2+ whereas the effect of C5b6-8/C5b6-9 was, in part, Ca2+-dependent. We postulated that TCC formation in myelin membranes causes activation of myelin-associated neutral proteases with subsequent hydrolysis of BP as a consequence of complement peptide insertion and channel formation. Such processes may alter the structure of myelin and augment the action of other inflammatory cells and their products in demyelinating diseases that could ultimately lead to the loss of myelin.  相似文献   

17.
18.
Equilibrium measurements of the binding of central nervous system myelin basic protein to sodium dodecyl sulphate, sodium deoxycholate and lysophosphatidylcholine have been obtained by gel permeation chromatography and dialysis. This protein associates with large amounts of each of these surfactants: the apparent saturation weight ratios (surfactant/protein) being 3.58 ± 0.12 and 2.30 ± 0.15 for dodecyl sulphate at ionic strengths 0.30 and 0.10, respectively, 1.34 ± 0.10 for deoxycholate (at 0.12 ionic strength) and 4.0 ± 0.5 for lysophosphatidylcholine. Binding to the ionic surfactants increases markedly close to their critical micelle concentrations. Sedimentation analysis shows that at 0.30 ionic strength in excess dodecyl sulphate the protein is monomeric. It becomes dimeric when the binding ratio falls below 1 at a free detergent concentration of approximately 0.25 mM: below this concentration much of the protein and detergent forms an insoluble complex. The amount of dodecyl sulphate bound at high concentrations and at both above-mentioned ionic strengths corresponds closely to that expected for interaction of a single polypeptide with two micelles. Variability of deoxycholate micelle size on interaction with other molecules precludes a similar analysis for this surfactant. Association was observed only with single micelles of lysophosphatidylcholine. The results provide strong evidence for dual lipid-binding sites on basic protein and indicate that lipid bilayer cross-linking by this protein may be effected by single molecules.  相似文献   

19.
Characterization of dodecylphosphocholine/myelin basic protein complexes   总被引:2,自引:0,他引:2  
The stoichiometry of myelin basic protein (MBP)/dodecylphosphocholine (DPC) complexes and the location of protein segments in the micelle have been investigated by electron paramagnetic resonance (EPR), ultracentrifugation, photon correlation light scattering, 31P, 13C, and 1H nuclear magnetic resonance (NMR), and electron microscopy. Ultracentrifugation measurements indicate that MBP forms stoichiometrically well-defined complexes consisting of 1 protein molecule and approximately 140 detergent molecules. The spin-labels 5-, 12-, and 16-doxylstearate have been incorporated into DPC/MBP aggregates. EPR spectral parameters and 13C and 1H NMR relaxation times indicate that the addition of MBP does not affect the environment and location of the labels or the organization of the micelles except for a slight increase in size. Previous results indicating that the protein lies primarily near the surface of the micelle have been confirmed by comparing 13C NMR spectra of the detergent with and without protein with spectra of protein/detergent aggregates containing spin-labels. Electron micrographs of the complexes taken by using the freeze-fracture technique confirm the estimated size obtained by light-scattering measurements. Overall, these results indicate that mixtures of MBP and DPC can form highly porous particles with well-defined protein and lipid stoichiometry. The structural integrity of these particles appears to be based on protein-lipid interactions. In addition, electron micrographs of aqueous DPC/MBP suspensions show the formation of a small amount of material consisting of large arrays of detergent micelles, suggesting that MBP is capable of inducing large changes in the overall organization of the detergent.  相似文献   

20.
The effects of myelin basic protein on the aggregation, lipid bilayer merging, intercommunication of aqueous compartments and leakage of small unilamellar vesicles of egg phosphatidylcholine containing different proportions of galactocerebroside and sulfatide were investigated. This was performed employing light scattering, absorbance changes and fluorescence assays (resonance energy transfer, Terbium/dipicolinic acid assay and carboxyfluorescein release). The apposition of membranes rapidly induced by myelin basic protein is enhanced by sulfatide but reduced by galactocerebroside compared to vesicles of egg phosphatidylcholine alone. On the other hand, the presence of either glycosphingolipid in the membrane interferes with the induction by myelin basic protein of lipid bilayer merging, subsequent fusion and changes of the membrane permeability. Our results support an important modulation by sulfatide and galactocerebroside on the interactions among membranes induced by myelin basic protein, depending on the relative proportions of the glycosphingolipids and phosphatidylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号