首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,4-beta-D-Xylan is the major component of plant cell-wall hemicelluloses. beta-D-Xylosidases are involved in the breakdown of xylans into xylose and belong to families 3, 39, 43, 52, and 54 of glycoside hydrolases. Here, we report the first crystal structure of a member of family 39 glycoside hydrolase, i.e. beta-D-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. This study also represents the first structure of any beta-xylosidase of the above five glycoside hydrolase families. Each monomer of T. saccharolyticum beta-xylosidase comprises three distinct domains; a catalytic domain of the canonical (beta/alpha)(8)-barrel fold, a beta-sandwich domain, and a small alpha-helical domain. We have determined the structure in two forms: D-xylose-bound enzyme and a covalent 2-deoxy-2-fluoro-alpha-D-xylosyl-enzyme intermediate complex, thus providing two snapshots in the reaction pathway. This study provides structural evidence for the proposed double displacement mechanism that involves a covalent intermediate. Furthermore, it reveals possible functional roles for His228 as the auxiliary acid/base and Glu323 as a key residue in substrate recognition.  相似文献   

2.
AXHs (arabinoxylan arabinofuranohydrolases) are alpha-L-arabinofuranosidases that specifically hydrolyse the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. Bacillus subtilis was recently shown to produce an AXH that cleaves arabinose units from O-2- or O-3-mono-substituted xylose residues: BsAXH-m2,3 (B. subtilis AXH-m2,3). Crystallographic analysis reveals a two-domain structure for this enzyme: a catalytic domain displaying a five-bladed beta-propeller fold characteristic of GH (glycoside hydrolase) family 43 and a CBM (carbohydrate-binding module) with a beta-sandwich fold belonging to CBM family 6. Binding of substrate to BsAXH-m2,3 is largely based on hydrophobic stacking interactions, which probably allow the positional flexibility needed to hydrolyse both arabinose substituents at the O-2 or O-3 position of the xylose unit. Superposition of the BsAXH-m2,3 structure with known structures of the GH family 43 exo-acting enzymes, beta-xylosidase and alpha-L-arabinanase, each in complex with their substrate, reveals a different orientation of the sugar backbone.  相似文献   

3.
Xylanase Xyn10B from Clostridium thermocellum is a modular enzyme that contains two family 22 carbohydrate binding modules N- (CBM22-1) and C- (CBM22-2) terminal of the family 10 glycoside hydrolase catalytic domain (GH10). In a previous study, we showed that removal of CBM22-1 reduces the resistance to thermoinactivation of the enzyme suggesting that this module is a thermostabilizing domain. Here, we show that it is the module border on the N-terminal side of GH10 that confers resistance to thermoinactivation and to proteolysis. Therefore, CBM22-1 does not function as a thermostabilizing domain and the role for this apparently non-functional CBM remains elusive.  相似文献   

4.
Beta-D-Xylosidases are glycoside hydrolases that catalyse the release of xylose units from short xylooligosaccharides and are engaged in the final breakdown of plant cell-wall hemicelluloses. beta-D-Xylosidases are found in glycoside hydrolase families 3, 39, 43, 52 and 54. The first crystal structure of a GH39 beta-xylosidase revealed a multi-domain organization with the catalytic domain having the canonical (beta/alpha)8 barrel fold. Here, we report the crystal structure of the GH39 Geobacillus stearothermophilus beta-D-xylosidase, inactivated by a point mutation of the general acid-base residue E160A, in complex with the chromogenic substrate molecule 2,5-dinitrophenyl-beta-D-xyloside. Surprisingly, six of the eight active sites present in the crystallographic asymmetric unit contain the trapped covalent glycosyl-enzyme intermediate, while two of them still contain the uncleaved substrate. The structural characterization of these two critical species along the reaction coordinate of this enzyme identifies the residues forming its xyloside-binding pocket as well as those essential for its aglycone recognition.  相似文献   

5.
Glycoside phosphorylases (GPs) with specificity for β-(1 → 3)-gluco-oligosaccharides are potential candidate biocatalysts for oligosaccharide synthesis. GPs with this linkage specificity are found in two families thus far—glycoside hydrolase family 94 (GH94) and the recently discovered glycoside hydrolase family 149 (GH149). Previously, we reported a crystallographic study of a GH94 laminaribiose phosphorylase with specificity for disaccharides, providing insight into the enzyme's ability to recognize its' sugar substrate/product. In contrast to GH94, characterized GH149 enzymes were shown to have more flexible chain length specificity, with preference for substrate/product with higher degree of polymerization. In order to advance understanding of the specificity of GH149 enzymes, we herein solved X-ray crystallographic structures of GH149 enzyme Pro_7066 in the absence of substrate and in complex with laminarihexaose (G6). The overall domain organization of Pro_7066 is very similar to that of GH94 family enzymes. However, two additional domains flanking its catalytic domain were found only in the GH149 enzyme. Unexpectedly, the G6 complex structure revealed an oligosaccharide surface binding site remote from the catalytic site, which, we suggest, may be associated with substrate targeting. As such, this study reports the first structure of a GH149 phosphorylase enzyme acting on β-(1 → 3)-gluco-oligosaccharides and identifies structural elements that may be involved in defining the specificity of the GH149 enzymes.  相似文献   

6.
α-1,4-Glucan lyase (EC 4.2.2.13) from the red seaweed Gracilariopsis lemaneiformis cleaves α-1,4-glucosidic linkages in glycogen, starch, and malto-oligosaccharides, yielding the keto-monosaccharide 1,5-anhydro-d-fructose. The enzyme belongs to glycoside hydrolase family 31 (GH31) but degrades starch via an elimination reaction instead of hydrolysis. The crystal structure shows that the enzyme, like GH31 hydrolases, contains a (β/α)8-barrel catalytic domain with B and B′ subdomains, an N-terminal domain N, and the C-terminal domains C and D. The N-terminal domain N of the lyase was found to bind a trisaccharide. Complexes of the enzyme with acarbose and 1-dexoynojirimycin and two different covalent glycosyl-enzyme intermediates obtained with fluorinated sugar analogues show that, like GH31 hydrolases, the aspartic acid residues Asp553 and Asp665 are the catalytic nucleophile and acid, respectively. However, as a unique feature, the catalytic nucleophile is in a position to act also as a base that abstracts a proton from the C2 carbon atom of the covalently bound subsite −1 glucosyl residue, thus explaining the unique lyase activity of the enzyme. One Glu to Val mutation in the active site of the homologous α-glucosidase from Sulfolobus solfataricus resulted in a shift from hydrolytic to lyase activity, demonstrating that a subtle amino acid difference can promote lyase activity in a GH31 hydrolase.  相似文献   

7.
The active site of the GH43 beta-xylosidase from Selenomonas ruminantium comprises two subsites and a single access route for ligands. Steady-state kinetic experiments that included enzyme (E), inhibitory sugars (I and X) and substrate (S) establish examples of EI, EII, EIX, and EIS complexes. Protonation states of catalytic base (D14, pK(a) 5) and catalytic acid (E186, pK(a) 7) govern formation of inhibitor complexes and strength of binding constants: e.g., EII, EIX, and EIS occur only with the D14(-)E186(H) enzyme and d-xylose binds to D14(-)E186(-) better than to D14(-)E186(H). Binding of two equivalents of l-arabinose to the D14(-)E186(H) enzyme is differentiated by the magnitude of equilibrium K(i) values (first binds tighter) and kinetically (first binds rapidly; second binds slowly). In applications, such as saccharification of herbaceous biomass for subsequent fermentation to biofuels, the highly efficient hydrolase can confront molar concentrations of sugars that diminish catalytic effectiveness by forming certain enzyme-inhibitor complexes.  相似文献   

8.
A bacterial strain Paenibacillus polymyxa GS01 was isolated from the interior of the roots of Korean cultivars of ginseng (Panax ginseng C. A. Meyer). The cel44C-man26A gene was cloned from this endophytic strain. This 4,056-bp gene encodes for a 1,352-aa protein which, based on BLAST search homologies, contains a glycosyl hydrolase family 44 (GH44) catalytic domain, a fibronectin domain type 3, a glycosyl hydrolase family 26 (GH26) catalytic domain, and a cellulose-binding module type 3. The multifunctional enzyme domain GH44 possesses cellulase, xylanase, and lichenase activities, while the enzyme domain GH26 possesses mannanase activity. The Cel44C enzyme expressed in and purified from Escherichia coli has an optimum pH of 7.0 for cellulase and lichenase activities, but is at an optimum pH of 5.0 for xylanase and mannanase activities. The optimum temperature for enzymatic activity was 50°C for all substrates. No detectable enzymatic activity was detected for the Cel44C-Man26A mutants E91A and E222A. These results suggest that the amino acid residues Glu91 and Glu222 may play an important role in the glycosyl hydrolases activity of Cel44C-Man26A.  相似文献   

9.
Cholestane 3 beta,5 alpha, 6 beta-triol has been identified as the exclusive product formed on hydration of cholesterol 5,6 alpha- and 5,6 beta-oxide catalyzed by cholesterol oxide hydrolase in liver microsomes obtained from five mammalian species. Highest activities were present in microsomes from rats and humans. Both acid- and base-catalyzed hydrolysis of the two epoxides also produce this product, presumably due to preference for pseudo-axial opening of the oxirane ring to form product with a trans-AB ring junction. Although the beta-oxide is more reactive than the alpha-oxide upon acid-catalyzed hydration, the alpha-oxide is a 4.5-fold better substrate than the beta-oxide as indicated by values of Vmax/Km. The kinetic parameters Vmax and Km for the reaction catalyzed by rat liver microsomes are 1.68 +/- 0.15 X 10(-7) M min-1 and 10.6 +/- 1.5 microM for the alpha-oxide and 1.32 +/- 0.11 X 10(-7) M min-1 and 37.2 +/- 5.5 microM for the beta-oxide at 0.35 mg protein/ml, pH 7.4, 6.35% (v/v) CH3CN, and 37 degrees C. Several imino compounds are competitive inhibitors for the enzyme from rat liver. The most effective of these is 5,6 alpha-iminocholestanol (Ki = 0.085 microM) which was known to be a good inhibitor from previous studies. Inhibition by aziridines is consistent with the participation of acid catalysis in the mechanism of action of the enzyme. Cholesterol oxide hydrolase is a distinct enzyme from oxidosqualene cyclase as well as microsomal epoxide hydrolase (EC 3.3.2.3) and the recently reported mouse hepatic microsomal epoxide hydrolase that catalyzes the hydration of trans-stilbene oxide.  相似文献   

10.
Ubiquitin carboxy-terminal hydrolase L5 (UCHL5) is a proteasome-associated deubiquitinating enzyme, which, along with RPN11 and USP14, is known to carry out deubiquitination on proteasome. As a member of the ubiquitin carboxy-terminal hydrolase (UCH) family, UCHL5 is unusual because, unlike UCHL1 and UCHL3, it can process polyubiquitin chain. However, it does so only when it is bound to the proteasome; in its free form, it is capable of releasing only relatively small leaving groups from the C-terminus of ubiquitin. Such a behavior might suggest at least two catalytically distinct forms of the enzyme, an apo form incapable of chain processing activity, and a proteasome-induced activated form capable of cleaving polyubiquitin chain. Through the crystal structure analysis of two truncated constructs representing the catalytic domain (UCH domain) of this enzyme, we were able to visualize a state of this enzyme that we interpret as its inactive form, because the catalytic cysteine appears to be in an unproductive orientation. While this work was in progress, the structure of a different construct representing the UCH domain was reported; however, in that work the structure reported was that of an inactive mutant [catalytic Cys to Ala; Nishio K et al. (2009) Biochem Biophys Res Commun 390, 855-860], which precluded the observation that we are reporting here. Additionally, our structures reveal conformationally dynamic parts of the enzyme that may play a role in the structural transition to the more active form.  相似文献   

11.
We solved the 1.8 ? crystal structure of β-fructofuranosidase from Bifidobacterium longum KN29.1 - a unique enzyme that allows these probiotic bacteria to function in the human digestive system. The sequence of β-fructofuranosidase classifies it as belonging to the glycoside hydrolase family 32 (GH32). GH32 enzymes show a wide range of substrate specificity and different functions in various organisms. All enzymes from this family share a similar fold, containing two domains: an N-terminal five-bladed β-propeller and a C-terminal β-sandwich module. The active site is located in the centre of the β-propeller domain, in the bottom of a 'funnel'. The binding site, -1, responsible for tight fructose binding, is highly conserved among the GH32 enzymes. Bifidobacterium longum KN29.1 β-fructofuranosidase has a 35-residue elongation of the N-terminus containing a five-turn α-helix, which distinguishes it from the other known members of the GH32 family. This new structural element could be one of the functional modifications of the enzyme that allows the bacteria to act in a human digestive system. We also solved the 1.8 ? crystal structure of the β-fructofuranosidase complex with β-D-fructose, a hydrolysis product obtained by soaking apo crystal in raffinose.  相似文献   

12.
13.
A lambda phage genomic library of Aeromonas caviae ME-1, a multiple-xylanase-producing bacterium, was screened for xylan degradation activities. We isolated one clone, B65, which had weak xylanase activity, by the DNS method, but gave no visible bands on zymogram assay using SDS-xylan-PAGE. Based on TLC analyses of enzymatic products and some glycosidase assays using p-nitrophenyl substrates, we established that pB65 encodes a beta-xylosidase gene. In the nucleotide sequence analysis, we found a 2190-bp open reading frame (ORF) named xysB. XysB protein is similar to some beta-xylosidases, which are categorized in the glycosyl hydrolase family 52. Another ORF (xyg), that showed similarity to the family 67 alpha-glucuronidase, was also found downstream of the xysB gene. The xysB ORF and its promoter region were cloned into the pT7-Blue vector and the transformant cells had beta-xylosidase activity. The relative molecular mass were estimated to be 75 kDa by SDS-PAGE and 159 kDa by gel filtration. These data showed that XysB has a dimeric structure of 80,697 Da subunits. This enzyme showed optimal activity at 50 degrees C and pH 6.0. It was stable below 40 degrees C and pH 5-8. The Km and Vmax were calculated to be 0.34 mM and 33 nmol x min(-1) x microg(-1), respectively. This enzyme also showed transglycosylation activity against X3 and produced X4 and X5.  相似文献   

14.
15.
Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of α1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus family GH57-type GBE and report its biochemical properties and crystal structure at 1.35-Å resolution. The enzyme has a central (β/α)7-fold catalytic domain A with an inserted domain B between β2 and α5 and an α-helix-rich C-terminal domain, which is shown to be essential for substrate binding and catalysis. A maltotriose was modeled in the active site of the enzyme which suggests that there is insufficient space for simultaneously binding of donor and acceptor substrates, and that the donor substrate must be cleaved before acceptor substrate can bind. The biochemical assessment showed that the GH57 GBE possesses about 4% hydrolytic activity with amylose and in vitro forms a glucan product with a novel fine structure, demonstrating that the GH57 GBE is clearly different from the GH13 GBEs characterized to date.  相似文献   

16.
In this study, we purified and molecularly characterized a cold-active β-galactosidase from Arthrobacter psychrolactophilus strain F2. The purified β-galactosidase from strain F2 exhibited high activity at 0°C, and its optimum temperature and pH were 10°C and 8.0, respectively. It was possible to inactivate the β-galactosidase rapidly at 45°C in 5 min. The enzyme was able to hydrolyze lactose as a substrate, as well as o-nitrophenyl-β-d-galactopyranoside (ONPG), the K m values with ONPG and lactose being calculated to be 2.8 mM and 50 mM, respectively, at 10°C. Moreover, the bglA gene encoding the β-galactosidase of strain F2 was cloned and analyzed. The bglA gene consists of a 3,084-bp open reading frame corresponding to a protein of 1,028 amino acid residues. BglAp, the gene product derived from bglA, had several conserved regions for glycosyl hydrolase family 2, e.g., the glycosyl hydrolase 2 (GH2) sugar binding domain, GH2 acid-base catalyst, GH2 triosephosphate isomerase barrel domain, GH2 signature 1, and several other GH2 conserved regions. From these facts, we conclude that the β-galactosidase from A. psychrolactophilus strain F2, which is a new member of glycosyl hydrolase family 2, is a cold-active enzyme that is extremely heat labile and could have advantageous applications in the food industry.  相似文献   

17.
The filamentous fungus Penicillium funiculosum produces a mixture of modular and non-modular xylanases belonging to different glycoside hydrolase (GH) families. In the present study, we heterologously expressed the cDNA encoding GH11 xylanase B (XYNB) and studied the enzymatic properties of the recombinant enzyme. Expression in Escherichia coli led to the partial purification of a glutathione fusion protein from the soluble fraction whereas the recombinant protein produced in Pichia pastoris was successfully purified using a one-step chromatography. Despite O-glycosylation heterogeneity, the purified enzyme efficiently degraded low viscosity xylan [K(m)=40+/-3 g l(-1), V(max)=16.1+/-0.8 micromol xylose min(-1) and k(cat)=5405+/-150 s(-1) at pH 4.2 and 45 degrees C] and medium viscosity xylan [K(m)=34.5+/-3.2 g l(-1), V(max)=14.9+/-1.0 micromol xylose min(-1)k(cat)=4966+/-333 s(-1) at pH 4.2 and 45 degrees C]. XYNB was further tested for its ability to interact with wheat xylanase inhibitors. The xylanase activity of XYNB produced in P. pastoris was strongly inhibited by both XIP-I and TAXI-I in a competitive manner, with a K(i) of 89.7+/-8.5 and 2.9+/-0.3 nM, respectively, whereas no inhibition was detected with TAXI-II. Physical interaction of both TAXI-I and XIP-I with XYNB was observed using titration curves across a pH range 3-9.  相似文献   

18.
Arthrobacter globiformis T6 isomalto-dextranase (AgIMD) is an enzyme that liberates isomaltose from the non-reducing end of a polymer of glucose, dextran. AgIMD is classified as a member of the glycoside hydrolase family (GH) 27, which comprises mainly α-galactosidases and α-N-acetylgalactosaminidases, whereas AgIMD does not show α-galactosidase or α-N-acetylgalactosaminidase activities. Here, we determined the crystal structure of AgIMD. AgIMD consists of the following three domains: A, C, and D. Domains A and C are identified as a (β/α)8-barrel catalytic domain and an antiparallel β-structure, respectively, both of which are commonly found in GH27 enzymes. However, domain A of AgIMD has subdomain B, loop-1, and loop-2, all of which are not found in GH27 human α-galactosidase. AgIMD in a complex with trisaccharide panose shows that Asp-207, a residue in loop-1, is involved in subsite +1. Kinetic parameters of the wild-type and mutant enzymes for the small synthetic saccharide p-nitrophenyl α-isomaltoside and the polysaccharide dextran were compared, showing that Asp-207 is important for the catalysis of dextran. Domain D is classified as carbohydrate-binding module (CBM) 35, and an isomaltose molecule is seen in this domain in the AgIMD-isomaltose complex. Domain D is highly homologous to CBM35 domains found in GH31 and GH66 enzymes. The results here indicate that some features found in GH13, -31, and -66 enzymes, such as subdomain B, residues at the subsite +1, and the CBM35 domain, are also observed in the GH27 enzyme AgIMD and thus provide insights into the evolutionary relationships among GH13, -27, -31, -36, and -66 enzymes.  相似文献   

19.
As the first known structures of a glycoside hydrolase family 54 (GH54) enzyme, we determined the crystal structures of free and arabinose-complex forms of Aspergillus kawachii IFO4308 alpha-l-arabinofuranosidase (AkAbfB). AkAbfB comprises two domains: a catalytic domain and an arabinose-binding domain (ABD). The catalytic domain has a beta-sandwich fold similar to those of clan-B glycoside hydrolases. ABD has a beta-trefoil fold similar to that of carbohydrate-binding module (CBM) family 13. However, ABD shows a number of characteristics distinctive from those of CBM family 13, suggesting that it could be classified into a new CBM family. In the arabinose-complex structure, one of three arabinofuranose molecules is bound to the catalytic domain through many interactions. Interestingly, a disulfide bond formed between two adjacent cysteine residues recognized the arabinofuranose molecule in the active site. From the location of this arabinofuranose and the results of a mutational study, the nucleophile and acid/base residues were determined to be Glu(221) and Asp(297), respectively. The other two arabinofuranose molecules are bound to ABD. The O-1 atoms of the two arabinofuranose molecules bound at ABD are both pointed toward the solvent, indicating that these sites can both accommodate an arabinofuranose side-chain moiety linked to decorated arabinoxylans.  相似文献   

20.
Paenibacillus polymyxa GS01 secretes Cel44C-Man26A as a multifunctional enzyme with cellulase, xylanase, lichenase, and mannanase activities. Cel44C-Man26A consists of 1,352 amino acids in which present a catalytic domain (CD) of the glycosyl hydrolase family 44 (GH44), fibronectin domain type 3 (Fn3), catalytic domain of glycosyl hydrolase family 26 (GH26), and a cellulose-binding module type 3 (CBM3). A truncated Cel44C-Man26A protein, consisting of 549 amino acid residues, reacted as a multifunctional mature enzyme despite the absence of the 10 amino acids containing GH44, Fn3, GH26, and CBM3. However, the multifunctional activity was not found in the mature Cel44C-Man26A protein truncated to less than 548 amino acids. The truncated Cel44C-Man26A proteins showed the optimum pH for the lichenase activity was pH 7.0, pH 6.0 for the xylanase and mannanase, and pH 5.0 for the cellulase. The truncated Cel44C-Man26A proteins exhibited enzymatic activity 40–120% higher than the full-length Cel44C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号