首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background  

The recent advent of murine leukaemia virus (MLV)-based replication-competent retroviral (RCR) vector technology has provided exciting new tools for gene delivery, albeit the advances in vector efficiency which have been realized are also accompanied by a set of fresh challenges. The expression of additional transgene sequences, for example, increases the length of the viral genome, which can lead to reductions in replication efficiency and in turn to vector genome instability. This necessitates efforts to analyse the rate and mechanism of recombinant emergence during the replication of such vectors to provide data which should contribute to improvements in RCR vector design.  相似文献   

4.
5.
6.
7.
Q vectors, bicistronic retroviral vectors for gene transfer   总被引:3,自引:0,他引:3  
We have developed a retroviral vector that incorporates unique features of some previously described vectors. This vector includes: 3' long terminal repeats (LTRs) of the self-inactivating class; a 5' LTR that is a hybrid of the cytomegalovirus (CMV) enhancer and the mouse sarcoma virus promoter; an internal CMV immediate early region promoter to drive expression of the transduced gene and the neomycin phosphotransferase selectable marker; an expanded multiple cloning site and an internal ribosome entry site. An SV40 ori was introduced into the vector backbone to promote high copy number replication in packaging cell lines that express the SV40 large T antigen. We demonstrate that these retroviral constructs, designated Q vectors, can be used in applications where high viral titers and high level stable or transient gene expression are desirable.  相似文献   

8.
9.
10.
11.
Kung SK  An DS  Chen IS 《Journal of virology》2000,74(8):3668-3681
We constructed human immunodeficiency virus type 1 (HIV-1) vectors that will allow higher levels of gene expression in T cells. Gene expression under the control of an internal cytomegalovirus (CMV) immediate-early promoter in a self-inactivating lentiviral vector (CSCG) is 4- to 15-fold lower in T-cell lines (SUPT1 and CEMX174) than in non-lymphoid-cell lines (HeLa and 293T). This is in contrast to a Moloney murine leukemia virus (MoMLV)-based retrovirus vector (SRalphaLEGFP). We therefore replaced the internal CMV promoter of CSCG with three different murine oncoretroviral long terminal repeat (LTR) promoters-murine sarcoma virus (MSV), MoMLV (MLV), and the LTR (termed Rh-MLV) that is derived from the ampho-mink cell focus-forming (AMP/MCF) retrovirus in the serum of one rhesus macaque monkey that developed T-cell lymphoma following autologous transplantation of enriched bone marrow stem cells transduced with a retrovirus vector preparation containing replication-competent viruses (E. F. Vanin, M. Kaloss, C. Broscius, and A. W. Nienhuis, J. Virol. 68:4241-4250, 1994). We found that the combination of Rh-MLV LTR and a partial gag sequence of MoMLV (Deltagag(871-1612)) in CS-Rh-MLV-E gave the highest level of enhanced green fluorescent protein (EGFP) gene expression compared with MLV, MSV LTR, phosphoglycerate kinase, and CMV promoters in T-cell lines, as well as activated primary T cells. Interestingly, there was a further two- to threefold increase in EGFP expression (thus, 10-fold-higher expression than with CMV) when the Rh-MLV promoter and Deltagag(871-1612) were used in a self-inactivating-vector setting that has a further deletion in the U3 region of the HIV-1 LTR. These hybrid vectors should prove useful in gene therapy applications for T cells.  相似文献   

12.
Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generating a cell line that expresses one viral vector RNA containing the MLV packaging signal (Psi) and another viral vector RNA containing the SNV packaging signal (E). The chimeric gag-pol expression constructs were introduced into the cells, and vector titers as well as the efficiency of RNA packaging were examined. Our data confirm that Gag is solely responsible for the selection of viral RNAs. Furthermore, the nucleocapsid (NC) domain in the SNV Gag is responsible for its ability to interact with both SNV E and MLV Psi. Replacement of the SNV NC with the MLV NC generated a chimeric Gag that could not package SNV RNA but retained its ability to package MLV RNA. A construct expressing SNV gag-MLV pol supported the replication of both MLV and SNV vectors, indicating that the gag and pol gene products from two different viruses can functionally cooperate to perform one cycle of retroviral replication. Viral titer data indicated that SNV cis-acting elements are not ideal substrates for MLV pol gene products since infectious viruses were generated at a lower efficiency. These results indicate that the nonreciprocal recognition between SNV and MLV extends beyond the Gag-RNA interaction and also includes interactions between Pol and other cis-acting elements.  相似文献   

13.
14.
15.
16.
Vectors for gene transfer and gene therapy were developed which combine the advantages of the integrase and recombinase systems. This was achieved by inserting two loxP sites for specific DNA excision into an MESV based retroviral vector. We show that this 'retroviral lox system' allows the infection of cells and the expression of transferred genes. In addition, we constructed an efficient retrovirus-based expression system for a modified Cre recombinase. Functional tests for DNA excision from integrated retroviral lox vectors were performed by the use of a negative selectable marker gene (thymidine kinase). Cre expression in cells infected with retroviral lox vectors and subsequent BrdU selection for cells in which site-specific recombination has occurred results in large numbers of independent cell clones. These results were confirmed by detailed molecular analysis. In addition we developed retroviral suicide vectors in which the enhancer/promoter elements of both LTRs were replaced by lox sequences. We show that lox-sequences located in the LTRs of retroviral vectors are stable during retroviral replication. Potential applications of this system would be the establishment of revertants of retrovirus-infected cells by controlled excision of nearly the complete proviral DNA.  相似文献   

17.
Retroviral vectors for gene therapy are designed to minimize the occurrence of replication-competent retrovirus (RCR); nonetheless, it is possible that a vector-derived RCR could establish an infection in a patient. Since the efficacy of antiretroviral agents can be impacted by interactions between virus, host cell, and drug, five commonly used antiretroviral drugs were evaluated for their abilities to inhibit the replication of a murine leukemia virus (MLV)-derived RCR in human cells. The results obtained indicate that the combination of nucleoside analogs zidovudine and dideoxyinosine with the protease inhibitor indinavir effectively inhibits MLV-derived RCR replication in three human cell lines. In addition, MLV-derived RCR was found to be inherently resistant to the nucleoside analogs lamivudine and stavudine, suggesting that mutations conferring resistance to nucleoside analogs in human immunodeficiency virus type 1 have the same effect even in an alternative viral backbone.  相似文献   

18.
19.
The Moloney murine leukemia virus (MLV)-based retroviral vector has been widely used for transfer of exogenous genes to various organs and tissues. Although the long terminal repeat (LTR) of MLV allows for transgene expression in a wide range of cell type, its activity is often silenced in vivo. In reporter macrophages transduced with a MLV-based retroviral vector, activity of the LTR was transiently and reversibly suppressed following stimulation by lipopolysaccharide (LPS). When unstimulated reporter macrophages were co-cultured with LPS-stimulated, untransduced macrophages, the LTR activity was similarly depressed. Activity of the LTR in retrovirus-transduced, mesangial cells was also down-regulated when co-cultured with activated macrophages. This suppressive effect was reproduced by cross-feeding with culture media conditioned by activated macrophages. LPS-stimulated macrophages abundantly expressed cytokines including IL-1beta, tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta1 (TGF-beta1). When externally added, TNF-alpha and/or TGF-beta1, but not IL-1beta, depressed activity of the LTR in reporter macrophages and reporter mesangial cells. These results raise a possibility that expression of transgenes driven by the MLV-LTR may be silenced in vivo when the retrovirally-transduced cells are co-localized with activated macrophages.  相似文献   

20.
To assess the factors required for integration and expression of retroviral DNA, we have examined viral DNA, RNA, and protein in NIH/3T3 mouse cells transformed by transfection with various forms of cloned Rous sarcoma virus (RSV) DNA. Linear RSV DNA molecules, derived from circular DNA containing two long terminal repeats (LTRs) and permuted by cleavage at the SacI restriction endonuclease site in the leader sequence, were integrated near the ends of the linear molecule, with the LTRs on the 3' side of the src gene. Integration of a subgenomic RSV DNA fragment containing the viral src gene without intact LTRs also occurred near the ends of the linear molecule. Head-to-tail tandem arrays of RSV DNA species were observed in some transformed cell lines that received fully digested DNA and in all cell lines that received DNA ligated to produce oligomers before transfection. Closed circular RSV DNA, with one or two LTRs, integrated without apparent specificity within several regions of the viral genome. After transfection with SacI-permuted RSV DNA still linked to arms of the lambda bacteriophage vector DNA, bacteriophage sequences were joined to host DNA. Transformed cell lines produced by transfection with the various forms of RSV DNA produced similar levels of viral src protein, although the efficiency of successful transformation varied by at least two orders of magnitude. Analyses of viral polyadenylated RNA, together with the patterns of viral DNA in transformed cells, indicated that viral DNA can be integrated and expressed without regard to LTR sequences, with adjacent host DNA presumably supplying signals required for the promotion and processing of functional src mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号