首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵婷  白红英  李九全  马琪  王鹏涛 《生态学报》2023,43(5):1843-1852
植被分布在一定程度上受控于气候因子,在气候变化背景下,利用生物气候指标研究地带性植被的潜在分布区格局变化对于区域生态系统应对气候变化具有有益的参考价值。从生态气候学角度出发,利用植被热量指标——有效温暖指数(EWI),研究1959—2020年以及未来气候模式下秦岭山地陕西段植被潜在分布格局的变化。结果表明:(1)气候变暖导致植被热量指标发生变化,近62年来,秦岭山地陕西段EWI总体呈上升趋势,并于2001年发生上升突变。(2)基于EWI对秦岭陕西段植被类型的潜在分布区划分发现,2001年以前秦岭北坡无暖温带落阔常绿混交林的分布区,2001年后秦岭北坡渭河东部出现了该植被类型的潜在分布区。(3)随着气候变暖,秦岭陕西段暖温带植被潜在分布区不断扩张,而温带、寒温带以及高寒植被分布区持续缩减,同时各植被类型分布区的平均海拔高度均呈上移趋势。从面积及海拔变化幅度来看,秦岭南坡较北坡植被对气候变化更为敏感,高海拔区较低海拔区植被对气候变化更为敏感。(4)在代表性浓度路径4.5及8.5(RCP4.5及RCP8.5)情景下,未来50年,秦岭南北坡均将可能出现亚热带常绿阔叶林潜在分布区,亚热带常绿阔叶...  相似文献   

2.
Understanding spring phenology changes in response to the rapid climate change at biome‐level is crucial for projecting regional ecosystem carbon exchange and climate–biosphere interactions. In this study, we assessed the long‐term changes and responses to changing climate of the spring phenology in six temperate biomes of China by analyzing the global inventory monitoring and modeling studies (GIMMS) NOAA/AVHRR Normalized Difference Vegetation Index (NDVI) and concurrent mean temperature and precipitation data for 1982–2006. Results show that the spring phenology trends in the six temperate biomes are not continuous throughout the 25 year period. The spring phenology in most areas of the six biomes showed obvious advancing trends (ranging from ?0.09 to ?0.65 day/yr) during the 1980s and early 1990s, but has subsequently suffered consistently delaying trends (ranging from 0.22 to 1.22 day/yr). Changes in spring (February–April) temperature are the dominating factor governing the pattern of spring vegetation phenology in the temperate biomes of China. The recently delayed spring phenology in these temperate biomes has been mainly triggered by the stalling or reversal of the warming trend in spring temperatures. Results in this study also reveal that precipitation during November–January can explain 16.1% (< 0.05), 20.9% (< 0.05) and 14.2% (< 0.05) of the variations in temperate deciduous forest (TDF), temperate steppe (TS), temperate desert (TD) respectively, highlighting the important role of winter precipitation in regulating changes in the spring vegetation phenology of water–limited biomes.  相似文献   

3.
区域气候背景对城市热岛效应的影响规律   总被引:2,自引:0,他引:2  
王阳  孙然好 《生态学报》2021,41(11):4288-4299
城市热岛效应受到区域气候背景的影响而具有显著的时空差异性,尚缺少大尺度对比研究。利用1991-2019年的月均气象数据,量化了我国69个典型城市的大气城市热岛效应强度,从热带、干带、暖温带、冷温带和极地带五个气候带,分析城市热岛效应的时空特征规律。结果表明:(1)区域差异:干带热岛效应明显高于其他气候带,极地带最弱,且表现为较强的冷岛效应,热带、暖温带、冷温带热岛效应较弱,而冷温带的京津冀地区由于城市化程度较高,表现出较强的热岛效应,温暖带中西南地区较为明显;(2)季节性差异:不同季节城市热岛效应的强弱关系在不同气候带有所不同,秋季热岛效应较为稳定,热岛和冷岛效应均主要处于弱强度范围,春、冬热岛效应较为波动,易出现强热岛、强冷岛效应的极端现象,夏季热岛效应发生率最高;(3)时间演变规律:城市热岛效应的多年演变规律在相同气候带较为一致,2010年前后是各气候带各季节城市热岛效应的变化拐点,2010年后,干带、冷温带、暖温带热岛效应均有所下降,热带、极地带有所上升。  相似文献   

4.
吴欣宇  朱秀芳 《生态学报》2023,43(24):10202-10215
分析不同区域植被对极端气候的响应对于加深对植被与气候之间关系的理解以及制定应对极端气候条件的措施尤为重要。基于2001—2020年气候数据和归一化植被指数(NDVI)数据,以植被区划为分析单元,分析中国8个植被区的NDVI和27个极端气候指数的时空变化趋势,探究各植被区植被NDVI对极端气候的响应特征与差异性。结果表明:(1)整个研究区及各植被区的平均NDVI年最大值呈显著增加趋势,其中,温带针叶、落叶阔叶混交林区增加趋势最明显,青藏高原高寒植被区增加趋势最弱。(2)极端高温指数多呈升高趋势。极端降水指数在研究区东部呈升高趋势,在西南部呈减少趋势。(3)在不同植被区对NDVI影响最大的极端气候指数不同,其中在寒温带针叶林区影响最大的指数为温暖时间持续指数(WSDI);在温带针叶、落叶阔叶混交林区和热带季风雨林、雨林区影响最大的指数为最高低温(TNx);在暖温带落叶阔叶林区和亚热带常绿阔叶林区为简单降水强度指数(SDII);在温带草原区为最高高温(TXx);在温带荒漠区为年总降水量(PRCPTOT);在青藏高原高寒植被区为结冰天数(ID)。  相似文献   

5.
Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of ?2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (?0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding ?5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.  相似文献   

6.
植物叶片的形态性状能够有效地反映生存环境的变化, 并且影响植物的基本行为和功能。该研究通过获取植物标本提供的叶片形态信息, 结合相关分析和标准化主轴分析, 探讨了南北样带暖温带区栎属(Quercus)树种叶片形态性状对气候条件的响应及适应策略。结果表明: 在南北样带暖温带区, 随着气候条件的变化, 栎属树种的叶片形态性状发生显著的变化。随着年平均气温的降低和年日照时数的增加, 栎属树种叶面积增加, 以利于吸收更多的光照辐射, 并增加叶片的边界层阻力, 减少叶片热量的散失; 而叶片分裂程度的增加不仅可以降低热量的散失, 也可以提高叶片液流的波动以增强叶片的生理活动; 叶脉密度随温度的升高、光照强度和降水量的增加而增加, 以响应叶片蒸腾作用的增强, 提高水分的运输能力和叶片的支撑能力。此外, 为适应南北样带暖温带区气候条件的变化, 栎属树种的叶片形成了一系列的形态性状组合, 随着叶面积的增加, 叶柄长度和叶片分裂程度逐渐增加, 而叶脉密度降低; 随着叶片倾向于向长条状发展, 叶柄长度和叶脉密度也随之增加。  相似文献   

7.
Temperature is one of the most important ecological factors affecting species survival and distributions. Therefore, global climate change, involving increases in mean surface temperature and the occurrence of extreme weather events, may pose a substantial challenge to biodiversity. Whereas tropical ectotherms are believed to be very sensitive to climate change, temperate‐zone species may actually benefit from higher temperatures. However, as in temperate zones large parts of the year are unsuitable for growth and reproduction, seasonal time constraints may complicate matters. Against this background we here investigate the impact of simulated climate change, involving increased mean temperatures and heat waves, across developmental pathways of the butterfly Lycaena tityrus (Poda) (Lepidoptera: Lycaenidae). Increased temperatures speeded up development but decreased pupal mass as expected. However, we found no evidence for detrimental effects of increased temperatures or even simulated heat waves. Furthermore, patterns did not differ between indirectly and directly developing individuals, which are assumed to be more time constrained. Our findings support the notion that not all species will be detrimentally affected by climate change, and suggest that species attributes may be more important than potential time constraints imposed by different developmental pathways.  相似文献   

8.
Global warming has led to substantially earlier spring leaf‐out in temperate‐zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf‐out by daylength and temperature using data from six tree species across 2,377 European phenological network ( www.pep725.eu ), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf‐out in all studied species. In warm springs when leaf‐out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming‐induced advancement of leaf‐out and protects the tree against precocious leaf‐out and the associated risks of late frosts. In contrast, longer‐than‐average daylength (in cold springs when leaf‐out is late) reduces the heat requirement for leaf‐out, ensuring that trees do not leaf‐out too late and miss out on large amounts of solar energy. These results provide the first large‐scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf‐out phenology in temperate deciduous trees.  相似文献   

9.
The response of natural vegetation to climate change is of global concern. In this research, changes in the spatial pattern of major terrestrial ecosystems from 1956 to 2006 in Inner Mongolia of China were analyzed with the Holdridge Life Zone (HLZ) model in a GIS environment, and net primary production (NPP) of natural vegetation was evaluated with the Synthetic model, to determine the effect of climate change on the ecosystem. The results showed that climate warming and drying strongly influenced ecosystems. Decreased precipitation and the subsequent increase in temperature and potential evapotranspiration caused a severe water deficiency, and hence decreased ecosystem productivity. Climate change also influenced the spatial distribution of HLZs. In particular, new HLZs began to appear, such as Warm temperate desert scrub in 1981 and Warm temperate thorn steppe in 2001. The relative area of desert (Cool temperate desert scrub, Warm temperate thorn steppe, Warm temperate desert scrub, Cool temperate desert and Warm temperate desert) increased by 50.2% over the last half century, whereas the relative area of forest (Boreal moist forest and Cool moist forest) decreased by 36.5%. Furthermore, the area of Cool temperate steppe has continuously decreased at a rate of 5.7% per decade; if the current rate of decrease continues, this HLZ could disappear in 173 years. The HLZs had a large shift range with the mean center of the relative life zones of desert shifting northeast, resulting a decrease in the steppe and forest area and an increase in the desert area. In general, a strong effect of climate change on ecosystems was indicated. Therefore, the important role of climate change must be integrated into rehabilitation strategies of ecosystem degradation of Inner Mongolia.  相似文献   

10.
Western boundary currents (WBCs) redistribute heat and oligotrophic seawater from the tropics to temperate latitudes, with several displaying substantial climate change‐driven intensification over the last century. Strengthening WBCs have been implicated in the poleward range expansion of marine macroflora and fauna, however, the impacts on the structure and function of temperate microbial communities are largely unknown. Here we show that the major subtropical WBC of the South Pacific Ocean, the East Australian Current (EAC), transports microbial assemblages that maintain tropical and oligotrophic (k‐strategist) signatures, to seasonally displace more copiotrophic (r‐strategist) temperate microbial populations within temperate latitudes of the Tasman Sea. We identified specific characteristics of EAC microbial assemblages compared with non‐EAC assemblages, including strain transitions within the SAR11 clade, enrichment of Prochlorococcus, predicted smaller genome sizes and shifts in the importance of several functional genes, including those associated with cyanobacterial photosynthesis, secondary metabolism and fatty acid and lipid transport. At a temperate time‐series site in the Tasman Sea, we observed significant reductions in standing stocks of total carbon and chlorophyll a, and a shift towards smaller phytoplankton and carnivorous copepods, associated with the seasonal impact of the EAC microbial assemblage. In light of the substantial shifts in microbial assemblage structure and function associated with the EAC, we conclude that climate‐driven expansions of WBCs will expand the range of tropical oligotrophic microbes, and potentially profoundly impact the trophic status of temperate waters.  相似文献   

11.
Aims Extreme climate events have become more severe and frequent with global change in recent years. The Chinese temperate steppes are an important component of the Eurasian steppes and highly sensitive and vulnerable to climatic change. As a result, the occurrence of extreme climate events must have strong impacts on the temperate steppes. Therefore, understanding the spatio-temporal trends in extreme climate is important for us to assess the sensitivity and vulnerability of Chinese temperate steppes to climatic changes. This research had two specific objects to (i) specify the temporal changes in extreme climate events across the whole steppe and (ii) compare the trend differences for extreme climate events in different types of steppes—meadow steppe, typical steppe and desert steppe.  相似文献   

12.
董校兵  曲鲁平  董刚  童琦  邵长亮 《生态学报》2021,41(17):6836-6845
热浪(Heat waves)是近年来频发的一种极端气候,其短期时间会影响生态系统植被健康并对生态系统碳通量产生长期负面影响,但其影响强度往往因生态系统类型而异。而内蒙古高原草甸草原属高纬度半干旱生态脆弱区,受气候变化影响显著,且正在遭受频繁热浪侵袭。在内蒙古呼伦贝尔草甸草原进行为期2年的野外原位模拟热浪控制实验,关注热浪对生态系统碳循环关键过程的影响和调节机制,并研究人类活动(刈割)与极端气候(热浪)对草甸草原碳通量的交互作用。结果表明,热浪处理显著降低了生态系统的土壤含水量,并显著降低草甸草原净碳交换(NEE)、生态系统呼吸(Re)和生态系统总生产力(GEP),分别为31%、1%和14%。然而,刈割处理下,能够有效降低热浪的负面影响,表现为热浪后草地恢复所需时间缩短了约1/3。同时,热浪后水分供给能缓解热浪对生态系统碳通量的滞后效应,并缩短生态系统所需的恢复时间。  相似文献   

13.
Summary House-dust flora and fauna were compared in the maritime cool temperate climate (in three degrees of continentality), the mediterranean warm temperate climate, the arctic climate and the tropical climate.An inverse relationship exists between continentality of the temperate climate and the numbers of arthropods and fungi (mesophilic as well as xerophilic) in the dust of the houses.The numbers of arthropods and fungi were lowest in mediterranean and arctic climates, most likely because of the limiting effect of the drier indoor climate. Fungi are more tolerant of dry conditions than house-dust inhabiting mites. Generally the highest numbers of fungal diaspores and arthropods were found in the tropics, where, however, the lowest number of positive samples was also found, especially for the species of the Aspergillus glaucus group and for Wallemia sebi. Maritime cool temperate climate showed the highest numbers of positive samples for fungi and mites.In general, a relationship exists between relative humidity and the density of fungal diaspores and arthropods.Supported by grants no. 294 and 78.30 of the Dutch Asthma Foundation  相似文献   

14.
Several temperate tree species are expected to migrate northward and colonize boreal forests in response to climate change. Tree migrations could lead to transitions in forest types, but these could be influenced by several non‐climatic factors, such as disturbances and soil conditions. We analysed over 10,000 forest inventory plots, sampled from 1970 to 2018 in meridional Québec, Canada, to identify what environmental conditions promote or prevent regional‐scale forest transitions. We used a continuous‐time multi‐state Markov model to quantify the probabilities of transitions between forest states (temperate, boreal, mixed, pioneer) as a function of climate (mean temperature and climate moisture index during the growing season), soil conditions (pH and drainage) and disturbances (severity levels of natural disturbances and logging). We further investigate how different disturbance types and severities impact forests' short‐term transient dynamics and long‐term equilibrium using properties of Markov transition matrices. The most common transitions observed during the study period were from mixed to temperate states, as well as from pioneer to boreal forests. In our study, transitions were mainly driven by natural and anthropogenic disturbances and secondarily by climate, whereas soil characteristics exerted relatively minor constraints. While major disturbances only promoted transitions to the pioneer state, moderate disturbances increased the probability of transition from mixed to temperate states. Long‐term projections of our model under the current environmental conditions indicate that moderate disturbances would promote a northward shift of the temperate forest. Moreover, disturbances reduced turnover and convergence time for all transitions, thereby accelerating forest dynamics. Contrary to our expectation, mixed to temperate transitions were not driven by temperate tree recruitment but by mortality and growth. Overall, our results suggest that moderate disturbances could catalyse rapid forest transitions and accelerate broad‐scale biome shifts.  相似文献   

15.
The aims of this study were to determine the prevalence of gastrointestinal nematodes (GIN) in horses, donkeys and mules and its associations with age, sex and climatic factors (derived from satellite data) to identify the potential risk factors of different climate regions in four Mexican states. From May 2017 to April 2018, a total of 560 farm owners or managers answered the questionnaire, and the data were used to establish three Köppen climate classes (tropical, dry, temperate). The overall prevalence of GIN parasites in equines was 77.9% (436 out of 560). The highest percentage of GIN was detected in mules (87.5%). In addition, the highest prevalence among the climate regions was found in the temperate climate (79.9%). The identified nematodes were strongyle type (77.9%), Parascaris equorum (5.7%), Strongyloides (0.7%) and Oxyuris equi (2.9%). The highest mean value of strongylid eggs per g faeces was found in the dry climate (632.6 ± 96.8), followed by that in the tropical climate (518.3 ± 49.7) and temperate climate (383.8 ± 30.2); however, a similar prevalence was observed between different climate regions. Age and sex were identified as risk factors for high shedding of strongyle eggs: the odds ratios for higher shedding intensities were 3.858 for geldings compared to mares, 2.602 for 6–10-year-old equines and 3.597 for ≤16-year-olds compared to young equines (≤5 years old).  相似文献   

16.
袁沫汐  赵林  李鑫鑫  林爱文 《生态学报》2023,43(14):6015-6032
随着极端气候事件频率和强度的增加,植被物候正在发生深刻的变化。然而,植被枯黄期(EGS)对极端气候的响应机制目前尚未厘清,特别是对于干旱半干旱地区的草地而言。因此,聚焦我国温带草地,基于1982—2015年全球监测与模型研究工作组归一化植被指数(GIMMS NDVI3g)长时间序列数据提取草地物候参数,并分析其时空变化规律;运用随机森林模型等方法探究温带草地EGS对极端气候变化的响应特征。结果表明:(1)全区多年平均EGS主要发生于270—290儒略日(DOY),59.8%的区域呈延迟趋势,其中显著延迟(P<0.05)的区域分布在新疆天山、阿尔泰山一带和准噶尔盆地西部、黄土高原北部、呼伦贝尔高原的西部和东北小兴安岭。(2)EGS与极端气温暖极值(日最低气温的最大值、日最高气温的最大值、暖夜日数、暖昼日数)之间均以广泛的正相关关系为主;相比之下,极端降水事件与EGS之间的关系相对比较复杂,这与各草地类型自身的生理策略和所处环境密切相关。(3)整体而言,持续干旱日数、气温日较差和暖夜日数对全域草地EGS动态变化具有极大的重要性。就不同草地类型而言,温带草甸草原主要受到气温日较差的影响...  相似文献   

17.
To mitigate the impacts of heat exposure, animals can take some actions to maintain their core body temperature, such as heat acclimation; however, the effect of heat acclimation on anxiety-like behavior in an open field is still not understood. The purpose of this study was to examine the anxiety-like behavior of heat acclimated rats in a temperate or heated open field. After being raised in a 23 °C environment for one week, male Wistar rats were exposed to a heated environment (32 °C) for 3 h (3H), 14 days (14D), or 28 days (28D), with free access to food and water, and compared with rats reared in a temperate environment (23 °C; Cont). After heat exposure, behavioral changes were monitored using an open field test (OFT) in a heated (32 °C) or temperate environment (23 °C). Compared with those in the Cont group, the body weights of rats in the 14D and 28D groups were lower. The OFT in the heated environment showed that grooming time was longer in 3H and 14D rats. In the temperate environment, grooming time was longer in all the heated groups. Rats from the 3H and 28D groups spent longer time in the center square when tested in the temperate environment. Rearing activity increased in 28D rats in the temperate environment, while the number of line crossings did not differ significantly between the heated groups and the two open fields. These results suggest that heat acclimation affected not only the physiological index such as core body temperature but also the anxiety-like behavior, mainly in the temperate open field. These changes might be beneficial when rats are faced with an open field.  相似文献   

18.
Heat-related injuries, and specifically exertional heat stroke, are a significant occupational risk in the armed forces, especially for those soldiers who are rapidly deployed from a temperate climate region to hot climate regions. Traditionally, adaptation to heat was considered as a matter of physiological adaptation. It is clear today that these injuries are mostly avoidable when applying proper education and behavioral adaptations. Education on behavioral adaptation for the prevention of heat injuries should be targeted at the individual and the organization level. This article summarizes the issue of proper preventive measures that should be taken to avoid, or at least minimize, the risk of exertional heat related injuries during military operations and training.  相似文献   

19.
Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm‐tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years’ winter warming. The warming treatments increased winter soil temperatures by 5–6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q10) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat‐spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil‐atmosphere C exchange.  相似文献   

20.
Extreme climatic events are expected to increase in frequency and magnitude as a consequence of global warming. Grasslands cover a large proportion of the European continent and contribute to both agricultural production and ecosystem services through inter and intraspecific genetic variability. This study analysed the effects of summer droughts and heat waves on the persistence and production of perennial forage grasses. Mediterranean and temperate populations of Dactylis glomerata L. and Festuca arundinacea (Schreb.) were compared at both Mediterranean and temperate sites in France. By manipulating canopy temperatures and water availability, grass swards in the field were subjected to cumulative summer and spring water deficits (CSSWD) ranging from 329 to 707 mm to test different projected climatic conditions and extreme summer events. Under controlled summer heat waves (6–21 days at a mean daily canopy temperature higher than 30–35 °C), there was no increase in membrane damage to surviving aerial tissues. Plant stress was thus mainly generated through greater soil water deficit. Under the greatest CSSWD, annual biomass production was reduced on average by 60% and 30% with temperate and Mediterranean populations, respectively. Thresholds for a significant increase in summer tiller mortality were seen at CSSWD higher than 450 mm for temperate populations and 550 mm for Mediterranean populations. The latter displayed lower predawn leaf water potentials in summer and recovered through intense tillering in the subsequent seasons. Under the most extreme CSSWD, fewer than 20% of tillers of temperate populations survived and their nitrogen uptake ability was drastically altered. The higher potential productivity of Mediterranean populations in winter was associated with greater frost sensitivity. The identification of thresholds for vulnerability and the determination of the role of genetic diversity will improve the management of plant resilience and the design of new plant material to cope with climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号