首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Site-directed mutagenesis was employed to examine the role played by specific surface residues in the activity of cytochrome c peroxidase. The double charge, aspartic acid to lysine, point mutations were constructed at positions 37, 79, and 217 on the surface of cytochrome c peroxidase, sites purported to be within or proximal to the recognition site for cytochrome c in an electron-transfer productive complex formed by the two proteins. The resulting mutant peroxidases were examined for catalytic activity by steady-state measurements and binding affinity by two methods, fluorescence binding titration and cytochrome c affinity chromatography. The cloned peroxidases exhibit similar UV-visible spectra to the wild-type yeast protein, indicating that there are no major structural differences between the cloned peroxidases and the wild-type enzyme. The aspartic acid to lysine mutations at positions 79 and 217 exhibited similar turnover numbers and binding affinities to that seen for the "wild type-like" cloned peroxidase. The same change at position 37 caused more than a 10-fold decrease in both turnover of and binding affinity for cytochrome c. This empirical finding localizes a primary recognition region critical to the dynamic complex. Models from the literature proposing structures for the complex between peroxidase and cytochrome c are discussed in light of these findings.  相似文献   

2.
3.
A novel method for initiating intramolecular electron transfer in cytochrome c oxidase is reported. The method is based upon photoreduction of cytochrome c labeled with thiouredopyrene-3,6, 8-trisulfonate in complex with cytochrome oxidase. The thiouredopyrene-3,6,8-trisulfonate-labeled cytochrome c was prepared by incubating the thiol reactive form of the dye with yeast iso-1-cytochrome c, containing a single cysteine residue. Laser pulse excitation of a stoichiometrical complex between thiouredopyrene-3,6,8-trisulfonate-cytochrome c and bovine heart cytochrome oxidase at low ionic strength resulted in the reduction of cytochrome c by the excited form of thiouredopyrene-3,6, 8-trisulfonate and subsequent intramolecular electron transfer from the reduced cytochrome c to cytochrome oxidase. The maximum efficiency by a single laser pulse resulted in the reduction of approximately 17% of cytochrome a, and was achieved only at a 1 : 1 ratio of cytochrome c to cytochrome oxidase. At higher cytochrome c to cytochrome oxidase ratios the heme a reduction was strongly suppressed.  相似文献   

4.
Electron transfer within complexes of cytochrome c (Cc) and cytochrome c peroxidase (CcP) was studied to determine whether the reactions are gated by fluctuations in configuration. Electron transfer in the physiological complex of yeast Cc (yCc) and CcP was studied using the Ru-39-Cc derivative, in which the H39C/C102T variant of yeast iso-1-cytochrome c is labeled at the single cysteine residue on the back surface with trisbipyridylruthenium(II). Laser excitation of the 1:1 Ru-39-Cc-CcP compound I complex at low ionic strength results in rapid electron transfer from RuII to heme c FeIII, followed by electron transfer from heme c FeII to the Trp-191 indolyl radical cation with a rate constant keta of 2 x 10(6) s-1 at 20 degrees C. keta is not changed by increasing the viscosity up to 40 cP with glycerol and is independent of temperature. These results suggest that this reaction is not gated by fluctuations in the configuration of the complex, but may represent the elementary electron transfer step. The value of keta is consistent with the efficient pathway for electron transfer in the crystalline yCc-CcP complex, which has a distance of 16 A between the edge of heme c and the Trp-191 indole [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755]. Electron transfer in the complex of horse Cc (hCc) and CcP was examined using Ru-27-Cc, in which hCc is labeled with trisbipyridylruthenium(II) at Lys-27. Laser excitation of the Ru-27-Cc-CcP complex results in electron transfer from RuII to heme c FeII with a rate constant k1 of 2.3 x 10(7) s-1, followed by oxidation of the Trp-191 indole to a radical cation by RuIII with a rate constant k3 of 7 x 10(6) s-1. The cycle is completed by electron transfer from heme c FeII to the Trp-191 radical cation with a rate constant k4 of 6.1 x 10(4) s-1. The rate constant k4 decreases to 3.4 x 10(3) s-1 as the viscosity is increased to 84 cP, but the rate constants k1 and k3 remain the same. The results are consistent with a gating mechanism in which the Ru-27-Cc-CcP complex undergoes fluctuations between a major state A with the configuration of the hCc-CcP crystalline complex and a minor state B with the configuration of the yCc-CcP complex. The hCc-CcP complex, state A, has an inefficient pathway for electron transfer from heme c to the Trp-191 indolyl radical cation with a distance of 20.5 A and a predicted value of 5 x 10(2) s-1 for k4A. The observed rate constant k4 is thus gated by the rate constant ka for conversion of state A to state B, where the rate of electron transfer k4B is expected to be 2 x 10(6) s-1. The temperature dependence of k4 provides activation parameters that are consistent with the proposed gating mechanism. These studies provide evidence that configurational gating does not control electron transfer in the physiological yCc-CcP complex, but is required in the nonphysiological hCc-CcP complex.  相似文献   

5.
We have determined the structures and thermodynamic stabilities of the wild type Asn-52 and unusually thermostable mutant Ile-52 yeast iso-1-cytochromes c (Das, G., Hickey, D. R. McLendon, D., McLendon, G., and Sherman, F. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 496-499). Although both structures were similar, Water-166, buried within the wild type protein, is excluded from the Ile-52 mutant, which substantially reorganizes the local hydrogen bonding. Wild type Cys-102 was replaced with alanine or serine to eliminate dimerization in vitro. The Cys-102 (wild type), Ala-102, and Ser-102 proteins were equally stable, whereas the chemically modified Cys-102-SCH3 was less stable. The order of stability observed with replacements at positions 52 and 102 was as follows: Ile-52 Ala-102 greater than Ala-52 Ala-102 greater than Asn-52 Ala-102 ("normal") greater than Gly-52 Ala-102. No significant stabilization was attributed to potential energy interactions expressed as helix-forming propensities of replacements at position 52. A high correlation between differences in free energy changes and transfer free energies suggests hydrophobic interactions are the main factor for enhancing stability in the Ile-52 mutant. Additional possible contributions to the thermostability of the Ile-52 variant are energetic effects due to packing and hydrogen bonding changes surrounding position 52.  相似文献   

6.
The oxidation of ferric cytochrome c peroxidase by hydrogen peroxide yields a product, compound ES [Yonetani, T., Schleyer, H., Chance, B., & Ehrenberg, A. (1967) in Hemes and Hemoproteins (Chance, B., Estabrook, R. W., & Yonetani, T., Eds.) p 293, Academic Press, New York], containing an oxyferryl heme and a protein free radical [Dolphin, D., Forman, A., Borg, D. C., Fajer, J., & Felton, R. H. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 614-618]. The same oxidant takes the ferrous form of the enzyme to a stable Fe(IV) peroxidase [Ho, P. S., Hoffman, B. M., Kang, C. H., & Margoliash, E. (1983) J. Biol. Chem. 258, 4356-4363]. It is 1 equiv more highly oxidized than the ferric protein, contains the oxyferryl heme, but leaves the radical site unoxidized. Addition of sodium fluoride to Fe(IV) peroxidase gives a product with an optical spectrum similar to that of the fluoride complex of the ferric enzyme. However, reductive titration and electron paramagnetic resonance (EPR) data demonstrate that the oxidizing equivalent has not been lost but rather transferred to the radical site. The EPR spectrum for the radical species in the presence of Fe(III) heme is identical with that of compound ES, indicating that the unusual characteristics of the radical EPR signal do not result from coupling to the heme site. By stopped-flow measurements, the oxidizing equivalent transfer process between heme and radical site is first order, with a rate constant of 0.115 s-1 at room temperature, which is independent of either ligand or protein concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The kinetics of reduction of free flavin semiquinones of the individual components of 1:1 covalent and electrostatic complexes of yeast ferric and ferryl cytochrome c peroxidase and ferric horse cytochrome c have been studied. Covalent cross-linking between the peroxidase and cytochrome c at low ionic strength results in a complex that has kinetic properties both similar to and different from those of the electrostatic complex. Whereas the cytochrome c heme exposure to exogenous reductants is similar in both complexes, the apparent electrostatic environment near the cytochrome c heme edge is markedly different. In the electrostatic complex, a net positive charge is present, whereas in the covalent complex, an essentially neutral electrostatic charge is found. Intracomplex electron transfer within the two complexes is also different. For the covalent complex, electron transfer from ferrous cytochrome c to the ferryl peroxidase has a rate constant of 1560 s-1, which is invariant with respect to changes in the ionic strength. The rate constant for intracomplex electron transfer within the electrostatic complex is highly ionic strength dependent. At mu = 8 mM a value of 750 s-1 has been obtained [Hazzard, J. T., Poulos, T. L., & Tollin, G. (1987) Biochemistry 26, 2836-2848], whereas at mu = 30 mM the value is 3300 s-1. This ionic strength dependency for the electrostatic complex has been interpreted in terms of the rearrangement of the two proteins comprising the complex to a more favorable orientation for electron transfer. In the case of the covalent complex, such reorientation is apparently impeded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have used microcalorimetry and analytical ultracentrifugation to test the model proposed in Pettigrew et al. [(1999) J. Biol. Chem. 274, 11383-11389] for the binding of small cytochromes to the cytochrome c peroxidase of Paracoccus denitrificans. Both methods reveal complexity in behavior due to the presence of a monomer/dimer equilibrium in the peroxidase. In the presence of either Ca(2+), or higher ionic strength, this equilibrium is shifted to the dimer. Experiments to study complex formation with redox partners were performed in the presence of Ca(2+) in order to simplify the equilibria that had to be considered. The results of isothermal titration calorimetry reveal that the enzyme can bind two molecules of horse cytochrome c with K(d) values of 0.8 microM and 2.5 microM (at 25 degrees C, pH 6.0, I = 0.026) but only one molecule of Paracoccus cytochrome c-550 with a K(d) of 2.8 microM, molar binding ratios confirmed by ultracentrifugation. For both horse cytochrome c and Paracoccus cytochrome c-550, the binding is endothermic and driven by a large entropy change, a pattern consistent with the expulsion of water molecules from the interface. For horse cytochrome c, the binding is weakened 3-fold at I = 0.046 M due to a smaller entropy change, and this is associated with an increase in enzyme turnover. In contrast, neither the binding of cytochrome c-550 nor its oxidation rate is affected by raising the ionic strength in this range. We propose that, at low ionic strength, horse cytochrome c is trapped in a nonproductive orientation on a broad capture surface of the peroxidase.  相似文献   

9.
Folding of yeast iso-1-AM cytochrome c   总被引:2,自引:0,他引:2  
E H Zuniga  B T Nall 《Biochemistry》1983,22(6):1430-1437
We describe a specific modification of iso-1 cytochrome c which results in blocking a single free sulfhydryl group. The derivative differs from the unmodified protein by the introduction of a small, uncharged group, thus maintaining the same charge balance as the native protein. The modified protein, obtained by treatment of iso-1 cytochrome c with iodoacetamide, has an activity indistinguishable from that of the unmodified protein in the lactate dehydrogenase-cytochrome c reductase system from yeast and has the same stability toward denaturation by guanidine hydrochloride. The kinetics of fluorescence changes associated with the guanidine hydrochloride induced folding-unfolding transition for modified iso-1 cytochrome c (iso-1-AM) have been investigated throughout the transition zone by using stopped-flow mixing. The results are compared to those for the yeast isozyme, iso-2 cytochrome c. The main features of the fluorescence-detected folding kinetics are similar, as might be expected for homologous proteins; however, the limiting value of the fraction of fast refolding protein (alpha 2) below the transition zone is smaller for iso-1-AM (approximately 0.7) than for iso-2 (approximately 0.9).  相似文献   

10.
Deletions and replacements of omega loops in yeast iso-1-cytochrome c   总被引:7,自引:0,他引:7  
omega (omega)-loops are protein secondary structural elements having small distances between segment termini. It should be possible to delete or replace certain of these omega-loops without greatly distorting the overall structure of the remaining portion of the molecule. Functional requirements of regions of iso-1-cytochrome c from the yeast Saccharomyces cerevisiae were investigated by determining the biosynthesis and activity in vivo of mutant forms in which four different omega-loops were individually deleted, or in which one omega-loop was replaced with five different segments. Deletions encompassing amino acid positions 27-33 and 79-83 either prevented synthesis of the holoprotein, or produced highly labile iso-1-cytochromes c, whereas deletions encompassing positions 42-45 and 48-55 allowed partial synthesis and activity. These two latter regions, therefore, are not absolutely required for any biosynthetic process such as heme attachment, mitochondrial import, or for enzymatic interactions. All replacements in Loop A (residue positions 24-33) with same size (10 amino acid residues), longer (13 and 15 amino acid residues), or shorter segments (6 amino acid residues), resulted in strains having at least partial levels of iso-1-cytochrome c; however, the relative activities ranged from zero to almost the normal level. Thus, Loop A does not appear to be essential for such biosynthetic steps as heme attachment and mitochondrial import. In contrast, the full range of relative activities suggest that this region interacts with physiological partners to carry out efficient electron transport.  相似文献   

11.
Pielak GJ  Wang X 《Biochemistry》2001,40(2):422-428
Isothermal titration calorimetry was used to study the formation of 19 complexes involving yeast iso-1-ferricytochrome c (Cc) and ferricytochrome c peroxidase (CcP). The complexes comprised combinations of the wild-type proteins, six CcP variants, and three Cc variants. Sixteen protein combinations were designed to probe the crystallographically defined interface between Cc and CcP. The data show that the high-affinity sites on Cc and CcP coincide with the crystallographically defined sites. Changing charged residues to alanine increases the enthalpy of complex formation by a constant amount, but the decrease in stability depends on the location of the amino acid substitution. Deleting methyl groups has a small effect on the binding enthalpy and a larger deleterious effect on the binding free energy, consistent with model studies of the hydrophobic effect, and showing that nonpolar interactions also stabilize the complex. Double-mutant cycles were used to determine the coupling energies for nine Cc-CcP residue pairs. Comparing these energies to the crystal structure of the complex leads to the conclusion that many of the substitutions induce a rearrangement of the complex.  相似文献   

12.
The yeast mutant cy1–76 is more than 99% deficient in iso-1-cytochrome c. Twelve intragenic revertants of cy1–76 have approximately normal amounts of iso-1-cytochromes c, which are altered by replacement of glutamic acid 71 with either tryptophan, leucine, tyrosine, serine, glutamine or lysine. It is concluded that position 71 in functioning iso-1-cytochrome c can be radically varied, and that the defect in cy1–76 is a nonsense codon, UAG, corresponding to position 71.Tryptophan is the replacement in 4 of the 12 revertants of cy1–76. Tryptophan is similarly abundant as a replacement of lysine 9 in the previously studied 42 revertants ofcy1–179, but is not a replacement in the 45 previously studied revertants of cyl-9. Since amino acid replacements indicate that either UAA or UAG nonsense mutations occur in all three mutants, these new results confirm the previously recognized distinction between the two nonsense codons: one, evidently UAG, can be reverted to a tryptophan codon, while the other, apparently UAA, cannot; apparently UGA does not encode tryptophan in yeast.  相似文献   

13.
14.
The eight class I, set 1 super-suppressor genes, SUP2, SUP3, SUP4, SUP5, SUP6, SUP7, SUP8 and SUP11 are not closely linked and map at distinct loci throughout the genome of yeast. Each of these suppressors causes the production of 5 to 10% of the normal amount of iso-1-cytochrome c when it is individually coupled to the ochre (UAA) mutant cy1-2. All eight iso-1-cytochromes c contain a residue of tyrosine at position 20 which corresponds to the site of the ochre codon. Several of these super-suppressors also were shown to act on cy1-9, but at a much lower efficiency. It was shown that iso-1-cytochrome c from one of the suppressed cy1-9 strains contains a tyrosine at position 2, which corresponds to the site of the ochre codon in this mutant. It is suggested that the gene product of the eight super-suppressors is tyrosine transfer RNA.  相似文献   

15.
Electron transfer from yeast ferrous cytochrome c to H2O2-oxidized yeast cytochrome c peroxidase has been studied using flash photoreduction methods. At low ionic strength (mu less than 10 mM), where a strong complex is formed between cytochrome c and peroxidase, electron transfer occurs rather slowly (k approximately 200s-1). However, at high ionic strength where the electrostatic complex is largely dissociated, the observed first-order rate constant for peroxidase reduction increases significantly reaching a concentration independent limit of k approximately 1500 s-1. Thus, at least in some cases, formation of an electrostatically-stabilized complex can actually impede electron transfer between proteins.  相似文献   

16.
J T Hazzard  T L Poulos  G Tollin 《Biochemistry》1987,26(10):2836-2848
The kinetics of reduction by free flavin semiquinones of the individual components of 1:1 complexes of yeast ferric and ferryl cytochrome c peroxidase and the cytochromes c of horse, tuna, and yeast (iso-2) have been studied. Complex formation decreases the rate constant for reduction of ferric peroxidase by 44%. On the basis of a computer model of the complex structure [Poulos, T.L., & Finzel, B.C. (1984) Pept. Protein Rev. 4, 115-171], this decrease cannot be accounted for by steric effects and suggests a decrease in the dynamic motions of the peroxidase at the peroxide access channel caused by complexation. The orientations of the three cytochromes within the complex are not equivalent. This is shown by differential decreases in the rate constants for reduction by neutral flavin semiquinones upon complexation, which are in the order tuna much greater than horse greater than yeast iso-2. Further support for differences in orientation is provided by the observation that, with the negatively charged reductant FMNH., the electrostatic environments near the horse and tuna cytochrome c electron-transfer sites within their respective complexes with peroxidase are of opposite sign. For the horse and tuna cytochrome c complexes, we have also observed nonlinear concentration dependencies of the reduction rate constants with FMNH.. This is interpreted in terms of dynamic motion at the protein-protein interface. We have directly measured the physiologically significant intra-complex one electron transfer rate constants from the three ferrous cytochromes c to the peroxide-oxidized species of the peroxidase. At low ionic strength these rate constants are 920, 730, and 150 s-1 for tuna, horse, and yeast cytochromes c, respectively. These results are also consistent with the contention that the orientations of the three cytochromes within the complex with CcP are not the same. The effect on the intracomplex electron-transfer rate constant of the peroxidase amino acid side chain(s) that is (are) oxidized by the reduction of peroxide was determined to be relatively small. Thus, the rate constant for reduction by horse cytochrome c of the peroxidase species in which only the heme iron atom is oxidized was decreased by only 38%, indicating that this oxidized side-chain group is not tightly coupled to the ferryl peroxidase heme iron. Finally, it was found that, in the absence of cytochrome c, neither of the ferryl peroxidase species could be rapidly reduced by flavin semiquinones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The interaction of yeast iso-1-cytochrome c with its physiological redox partner cytochrome c peroxidase has been investigated using heteronuclear NMR techniques. Chemical shift perturbations for both 15N and 1H nuclei arising from the interaction of isotopically enriched 15N cytochrome c with cytochrome c peroxidase have been observed. For the diamagnetic, ferrous cytochrome c, 34 amides are affected by binding, corresponding to residues at the front face of the protein and in agreement with the interface observed in the 1:1 crystal structure of the complex. In contrast, for the paramagnetic, ferric protein, 56 amides are affected, corresponding to residues both at the front and toward the rear of the protein. In addition, the chemical shift perturbations were larger for the ferric protein. Using experimentally observed pseudocontact shifts the magnetic susceptibility tensor of yeast iso-1-cytochrome c in both the free and bound forms has been calculated with HN nuclei as inputs. In contrast to an earlier study, the results indicate that there is no change in the geometry of the magnetic axes for cytochrome c upon binding to cytochrome c peroxidase. This leads us to conclude that the additional effects observed for the ferric protein arise either from a difference in binding mode or from the more flexible overall structure causing a transmittance effect upon binding.  相似文献   

18.
The structural and folding requirements of eukaryotic cytochromes c have been investigated by determining the appropriate DNA sequences of a collection of 46 independent cyc 1 missense mutations obtained in the yeast Saccharomyces cerevisiae and by deducing the corresponding amino acid replacements that abolish function of iso-1-cytochrome c. A total of 33 different replacements at 19 amino acid positions were uncovered in this and previous studies. Because all of these nonfunctional iso-1-cytochromes c are produced at far below the normal level and because a representative number are labile in vitro, most of the replacements appear to be affecting stability of the protein or heme attachment. By considering the tertiary structure of related cytochromes c, the loss of function of most of the mutant iso-1-cytochromes c could be attributed to either replacements of critical residues that directly interact with the heme group or to replacements that disrupt the proper folding of the protein. The replacements of residues interacting with the heme group include those required for covalent attachment (Cys-19 and Cys-22), ligand formation (His-23 and Met-85), and formation of the immediate heme environment (Leu-37, Tyr-53, Trp-64, and Leu-73). Proper folding of the protein is prevented by replacements of glycine residues at sites that cannot accommodate side chains (Gly-11 and Gly-34); by replacements of residues with proline, which limit the torsion angle (Leu-14 and His-38); and by replacements apparently unable to direct the local folding of the backbone into the proper conformation (Pro-35, Tyr-72, Asn-75, Pro-76, Lys-84, Leu-99, and Leu-103). Even though most of the missense mutations occurred at sites corresponding to evolutionarily invariant or conserved residues, a consideration of the replacements in functional revertants indicates that the requirement for residues evolutionarily preserved is less stringent than commonly assumed.  相似文献   

19.
Flöck D  Helms V 《Proteins》2002,47(1):75-85
Electron transferring protein complexes form only transiently and the crystal structures of electron transfer protein--protein complexes involving cytochrome c could so far be determined only for the pairs of yeast cytochrome c peroxidase (CcP) with iso-1-cytochrome c (iso-1-cyt c) and with horse heart cytochrome c (cyt c). This article presents models from computational docking for complexes of cytochrome c oxidase (COX) from Paracoccus denitrificans with horse heart cytochrome c, and with its physiological counterpart cytochrome c552 (c552). Initial docking is performed with the FTDOCK program, which permits an exhaustive search of translational and rotational space. A filtering procedure is then applied to reduce the number of complexes to a manageable number. In a final step of structural and energetic refinement, the complexes are optimized by rigid-body energy minimization with the molecular mechanics package CHARMM. This methodology was first tested on the CcP:iso-1-cyt c complex, in which the complex with the lowest CHARMM energy has an RMSD from the crystal structure of only 1.8 A (C(alpha) carbon atoms). Notably, the crystal conformation has an even lower energy. The same procedure was then applied to COX:cyt c and COX:c552. The lowest-energy COX:cyt c complex is very similar to a docking model previously described for the complex of bovine cytochrome c oxidase with horse heart cytochrome c. For the COX:c552 complex, cytochrome c552 is found in two different orientations, depending on whether it is docked against COX from a two-subunit or from a four-subunit crystal structure, respectively. Both conformations are discussed critically in the light of the available experimental data.  相似文献   

20.
A hypothetical three-dimensional model of the cytochrome c peroxidase . tuna cytochrome c complex is presented. The model is based on known x-ray structures and supported by chemical modification and kinetic data. Cytochrome c peroxidase contains a ring of aspartate residues with a spatial distribution on the molecular surface that is complementary to the distribution of highly conserved lysines surrounding the exposed edge of the cytochrome c heme crevice, namely lysines 13, 27, 72, 86, and 87. These lysines are known to play a functional role in the reaction with cytochrome c peroxidase, cytochrome oxidase, cytochrome c1, and cytochrome b5. A hypothetical model of the complex was constructed with the aid of a computer-graphics display system by visually optimizing hydrogen bonding interactions between complementary charged groups. The two hemes in the resulting model are parallel with an edge separation of 16.5 A. In addition, a system of inter- and intramolecular pi-pi and hydrogen bonding interactions forms a bridge between the hemes and suggests a mechanism of electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号