首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pancreatic lipase is a soluble globular protein that must undergo structural modifications before it can hydrolyze oil droplets coated with bile salts. The binding of colipase and movement of the lipase lid open access to the active site. Mechanisms triggering lid mobility are unclear. The *KNILSQIVDIDGI* fragment of the lid of the human pancreatic lipase is predicted by molecular modeling to be a tilted peptide. Tilted peptides are hydrophobicity motifs involved in membrane fusion and more globally in perturbations of hydrophobic/hydrophilic interfaces. Analysis of this lid fragment predicts no clear consensus of secondary structure that suggests that its structure is not strongly sequence determined and could vary with environment. Point mutations were designed to modify the hydrophobicity profile of the [240-252] fragment and their consequences on the lipase-mediated catalysis were tested. Two mutants, in which the tilted peptide motif was lost, also have poor activity on bile salt-coated oil droplets and cannot be reactivated by colipase. Conversely, one mutant in which a different tilted peptide is created retains colipase dependence. These results suggest that the tilted hydrophobicity pattern of the [240-252] fragment is neither important for colipase binding to lipase, nor for interfacial binding but is important to trigger the maximal catalytic efficiency of lipase in the presence of bile salt.  相似文献   

2.
Epitope mapping was performed on human pancreatic lipase (HPL) using the SPOTscan method. A set of 146 short (12 amino acid residues) synthetic overlapping peptides covering the entire amino acid sequence of HPL were used to systematically assess the immunoreactivity of antisera raised in rabbits against native HPL, HPL without a lid (HPL(-lid)) and HPL covalently inhibited by diethyl p-nitrophenyl phosphate (DP-HPL). In the latter form of HPL, the lid domain controlling the access to the active site was assumed to exist in the open conformation. All the anti-lipase sera were tested in a direct ELISA, anti-HPL serum showing the greatest antibody titer. Although from the structural point of view, the differences between the various forms of HPL were restricted to the lid domain, differences in the antigenic properties of HPL were observed with the SPOTscan method, and the anti-DP-HPL antibodies showed the strongest reactivity. Most of the peptide stretches recognized included amino acid residues which are accessible at the surface of the lipase, except for those located near the active site. Two small peptides (T173-P180, V199-A207) were identified in the vicinity of the active site, their antipeptide antibodies were produced and their reactivity towards the various forms of HPL was tested in a double sandwich ELISA. No reactivity was observed under these conditions. Two antipeptide antibodies directed against two other selected peptides, P208-V221 (belonging to the beta9 loop) and I245-F258 (belonging to the lid domain) were prepared and found to react much more strongly with DP-HPL than with HPL or HPL(-lid) in a double sandwich ELISA. These antibodies should provide useful tools for monitoring the conformational changes taking place during the opening of the HPL lid domain.  相似文献   

3.
Five key amino acid residues from human pancreatic lipase (HPL) are mutated in some pancreatic lipase-related proteins 2 (PLRP2) that are not reactivated by colipase in the presence of bile salts. One of these residues (Y403) is involved in a direct interaction between the HPL C-terminal domain and colipase. The other four residues (R256, D257, Y267, and K268) are involved in the interactions stabilizing the open conformation of the lid domain, which also interacts with colipase. Here we produced and characterized three HPL mutants: HPL Y403N, an HPL four-site mutant (R256G, D257G, Y267F, and K268E), and an HPL five-site mutant (R256G, D257G, Y267F, K268E, and Y403N), in which the HPL amino acids were replaced by those present in human PLRP2. Colipase reactivated both the HPL Y403N mutant and HPL, and Y403 is therefore not essential for lipase-colipase interactions. Both the HPL four-site and five-site mutants showed low activity on trioctanoin, were inhibited by bile salts (sodium taurodeoxycholate, NaTDC) and were not reactivated by colipase. The interfacial binding of the HPL four-site mutant to a trioctanoin emulsion was suppressed in the presence of 4 mM NaTDC and was not restored by addition of colipase. Protein blotting/protein overlay immunoassay revealed that the HPL four-site mutant-colipase interactions are not abolished, and therefore, the absence of reactivation of the HPL four-site mutant is probably due to a lid domain conformation that prevents the interfacial binding of the lipase-colipase complex. The effects of colipase were also studied with HPL(-lid), an HPL mutant showing an 18-residue deletion within the lid domain, which therefore has only one colipase interaction site. HPL(-lid) showed a low activity on trioctanoin, was inhibited by bile salts, and recovered its lipase activity in the presence of colipase. Reactivation of HPL(-lid) by colipase was associated with a strong interfacial binding of the mutant to a trioctanoin emulsion. The lid domain is therefore not essential for either the interfacial binding of HPL or the lipase-colipase interactions.  相似文献   

4.
Access to the active site of human pancreatic lipase (HPL) is controlled by a surface loop (the lid) that undergoes a conformational change in the presence of amphiphiles and lipid substrate. The question of how and when the lid opens still remains to be elucidated, however. A paramagnetic probe was covalently bound to the lid via the D249C mutation, and electron paramagnetic resonance (EPR) spectroscopy was used to monitor the conformational change in solution. Two EPR spectral components, corresponding to distinct mobilities of the probe, were attributed to the closed and open conformations of the HPL lid, based on experiments performed with the E600 inhibitor. The open conformation of the lid was observed in solution at supramicellar bile salt concentrations. Colipase alone did not induce lid opening but increased the relative proportions of the open conformation in the presence of bile salts. The opening of the lid was found to be a reversible process. Using various colipase to lipase molar ratios, a correlation between the proportion of the open conformation and the catalytic activity of HPL was observed.  相似文献   

5.
Access to the active site of pancreatic lipase (PL) is controlled by a surface loop, the lid, which normally undergoes conformational changes only upon addition of lipids or amphiphiles. Structures of PL with their lids in the open and functional conformation have required cocrystallization with amphiphiles. Here we report two crystal structures of wild-type and unglycosylated human pancreatic lipase-related protein 2 (HPLRP2) with the lid in an open conformation in the absence of amphiphiles. These structures solved independently are strikingly similar, with some residues of the lid being poorly defined in the electron-density map. The open conformation of the lid is however different from that previously observed in classical liganded PL, suggesting different kinetic properties for HPLRP2. Here we show that the HPLRP2 is directly inhibited by E600, does not present interfacial activation, and acts preferentially on substrates forming monomers or small aggregates (micelles) dispersed in solution like monoglycerides, phospholipids and galactolipids, whereas classical PL displays reverse properties and a high specificity for unsoluble substrates like triglycerides and diglycerides forming oil-in-water interfaces. These biochemical properties imply that the lid of HPLRP2 is likely to spontaneously adopt in solution the open conformation observed in the crystal structure. This open conformation generates a large cavity capable of accommodating the digalactose polar head of galactolipids, similar to that previously observed in the active site of the guinea pig PLRP2, but absent from the classical PL. Most of the structural and kinetic properties of HPLRP2 were found to be different from those of rat PLRP2, the structure of which was previously obtained with the lid in a closed conformation. Our findings illustrate the essential role of the lid in determining the substrate specificity and the mechanism of action of lipases.  相似文献   

6.
The advantages of enzymatic reactions in compressed gases such as supercritical CO2 are limited due to the enzyme inactivation. But recent experimental observations reported the high activity of enzymes such as lipases in compressed propane. But there are no clear reasons at the molecular levels for such behavior. In this work using molecular dynamic simulation, we showed for the first time the possibility of interfacial activation of lipases in a compressed gas. The analysis showed that in compressed propane the lid of the lipase was opened and so the active conformation of the enzyme was resulted. Moreover it is found that in the compressed propane, similar to the aqueous solution, the enzyme has native conformation.  相似文献   

7.
Lowe ME 《Biochimie》2000,82(11):997-1004
The lipase gene family includes pancreatic triglyceride lipase and two pancreatic proteins, pancreatic lipase related proteins 1 and 2, with strong nucleotide and amino acid sequence homology to pancreatic triglyceride lipase. All three proteins have virtually identical three-dimensional structures. Of the pancreatic triglyceride lipase homologues, only pancreatic lipase related protein 2 has lipase activity. Like pancreatic triglyceride lipase, related protein 2 cleaves triglycerides, but it has broader substrate specificity. Pancreatic lipase related protein 2 also hydrolyzes phospholipids and galactolipids, two fats that are not substrates for pancreatic triglyceride lipase. The rat-related protein 2 also differs from pancreatic triglyceride lipase in sensitivity to bile salts and in response to colipase. Although the pancreas expresses both lipases, their temporal pattern of expression differs. Pancreatic lipase-related protein 2 mRNA appears before birth and persists into adulthood, whereas PTL mRNA first appears at the suckling-weanling transition. Additionally, intestinal enterocytes, paneth cells and cultured cytotoxic T-cells express mRNA encoding pancreatic lipase related protein 2. A physiological function for pancreatic lipase related protein 2 was demonstrated in mice that did not express this protein. Pancreatic lipase related protein 2 deficient mice malabsorbed fat in the suckling period, but not after weaning. They also had a defect in T-cell mediated cytotoxicity. Thus, pancreatic lipase related protein 2 is a lipase that participates in the cytotoxic activity of T-cells and plays a critical role in the digestion of breast milk fats.  相似文献   

8.
9.
The triglyceride (TG) lipase gene subfamily, consisting of LPL, HL, and endothelial lipase (EL), plays a central role in plasma lipoprotein metabolism. Compared with LPL and HL, EL is relatively more active as a phospholipase than as a TG lipase. The amino acid loop or "lid" covering the catalytic site has been implicated as the basis for the difference in substrate specificity between HL and LPL. To determine the role of the lid in the substrate specificity of EL, we studied EL in comparison with LPL by mutating specific residues of the EL lid and exchanging their lids. Mutation studies showed that amphipathic properties of the lid contribute to substrate specificity. Exchanging lids between LPL and EL only partially shifted the substrate specificity of the enzymes. Studies of a double chimera possessing both the lid and the C-terminal domain (C-domain) of EL in the LPL backbone showed that the role of the lid in determining substrate specificity does not depend on the nature of the C-domain of the lipase. Using a kinetic assay, we showed an additive effect of the EL lid on the apparent affinity for HDL(3) in the presence of the EL C-domain.  相似文献   

10.
Small unilamelar vesicles of anionic phospholipids (SUV), such as 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG), provide an interface where Thermomyces lanuginosa triglyceride lipase (TlL) binds and adopts a catalytically active conformation for the hydrolysis of substrate partitioned in the interface, such as tributyrin or p-nitrophenylbutyrate, with an increase in catalytic rate of more than 100-fold for the same concentration of substrate [Berg et al. (1998) Biochemistry 37, 6615-6627.]. This interfacial activation is not seen with large unilamelar vesicles (LUV) of the same composition, or with vesicles of zwitterionic phospholipids such as 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine (POPC), independently of the vesicle size. Tryptophan fluorescence experiments show that lipase binds to all those types of vesicles with similar affinity, but it adopts different forms that can be correlated with the enzyme catalytic activity. The spectral change on binding to anionic SUV corresponds to the catalytically active, or "open" form of the enzyme, and it is not modified in the presence of substrate partitioned in the vesicles, as demonstrated with inactive mutants. This indicates that the displacement of the lid characteristic of lipase interfacial activation is induced by the anionic phospholipid interface without blocking the accessibility of the active site to the substrate. Experiments with a mutant containing only Trp89 in the lid show that most of the spectral changes on binding to POPG-SUVs take place in the lid region that covers the active site; an increase in Trp anisotropy indicates that the lid becomes less flexible in the active form, and quenching experiments show that it is significantly buried from the aqueous phase. On the other hand, results with a mutant where Trp89 is changed to Leu show that the environment of the structural tryptophans in positions 117, 221, and 260 is somehow altered on binding, although their mobility and solvent accessibility remains the same as in the inactive form in solution. The form of TlL bound to POPC-SUV or -LUV vesicles as well as to LUV vesicles of POPG has the same spectral signatures and corresponds to an inactive or "closed" form of the enzyme. In these interfaces, the lid is highly flexible, and Trp89 remains accessible to solvent. Resonance energy transfer experiments show that the orientation of TlL in the interface is different in the active and inactive forms. A model of interaction consistent with these data and the available X-ray structures is proposed. This is a unique system where the composition and physical properties of the lipid interface control the enzyme activity.  相似文献   

11.
12.
13.
In several lipases access to the enzyme active site is regulated by the position of a mobile structure named the lid. The role of this region in modulating lipase function is reviewed in this paper analysing the results obtained with three different recombinant lipases modified in the lid sequence: Candida rugosa lipase isoform 1 (CRL1), Pseudomonas fragi lipase (PFL) and Bacillus subtilis lipase A (BSLA). A CRL chimera enzyme obtained by replacing its lid with that of another C. rugosa lipase isoform (CRL1LID3) was found to be affected in both activity and enantioselectivity in organic solvent. Variants of the PFL protein in which three polar lid residues were replaced with amino acids strictly conserved in homologous lipases displayed altered chain length preference profile and increased thermostability. On the other hand, insertion of lid structures from structurally homologous enzymes into BSLA, a lipase that naturally does not possess such a lid structure, caused a reduction in the enzyme activity and an altered substrate specificity. These results strongly support the concept that the lid plays an important role in modulating not only activity but also specifity, enantioselectivity and stability of lipase enzymes.  相似文献   

14.
Intestinal fat digestion is carried out by the concerted action of pancreatic lipase and its protein cofactor colipase. Colipase is secreted from pancreas as a procolipase and is transformed into colipase by the trypsin cleavage of the Arg5-Gly6 bond during liberation of an N-terminal pentapeptide. The kinetic parameters for the lipase-colipase system compared to the lipase-procolipase system has been compared using trioctanoin and Intralipid as substrates. It was found that at pH 7.0 the Kmapp using Intralipid as substrate was the same for procolipase and colipase, 0.06 mM and 0.05 mM, respectively. At pH 8.0, however, the Kmapp were different-0.23 mM for procolipase and 0.08 mM for colipase. In a similar way the binding between colipase and lipase had a dissociation constant of 2.4 x 10(-6) M at pH 7.0, while for procolipase--lipase binding the dissociation constant was 4.1 x 10(-6) M with no significant difference. At pH 8.0 the binding between colipase and lipase was stronger, Kd being 2.0 x 10(-7) M, while weaker for procolipase and lipase, Kd being 1.0 x 10(-5) M. It is concluded that at the physiological pH value as is found in the intestine, the activation of procolipase to colipase has no influence on the hydrolysis of trioctanoin or Intralipid in the presence of bile salt.  相似文献   

15.
16.
In vertebrates, dietary fat digestion mainly results from the combined effect of pancreatic lipase, colipase, and bile. It has been proposed that in vivo lipase adsorption on oil-water emulsion is mediated by a preformed lipase-colipase-mixed micelle complex. The main lipase-colipase binding site is located on the C-terminal domain of the enzyme. We report here that in vitro the isolated C-terminal domain behaves as a potent noncovalent inhibitor of lipase and that the inhibitory effect is triggered by the presence of micelles. Lipase inhibition results from the formation of a nonproductive C-terminal domain-colipase-micelle ternary complex, which competes for colipase with the active lipase-colipase-micelle ternary complex, thus diverting colipase from its lipase-anchoring function. The formation of such a complex has been evidenced by molecular sieving experiments. This nonproductive complex lowers the amount of active lipase thus reducing lipolysis. Preliminary experiments performed in rats show that the C-terminal domain also behaves as an inhibitor in vivo and thus could be considered a potential new tool for specifically reducing intestinal lipolysis.  相似文献   

17.
Substrate specificity of pancreatic lipase   总被引:1,自引:0,他引:1  
  相似文献   

18.
A procedure for the isolation of lipase (glycerolester hydrolase, EC 3.1.1.3) from rat pancreas is described. The purification scheme includes homogenization of the pancreas, centrifugation at 3,000 rpm, centrifugation at 40,000 rpm, DEAE-cellulose chromatography, precipitation of amylase as the amylase-glycogen complex, gel filtration of the amylase-free proteins on Sephadex G-100, and chromatography on carboxymethyl-Sephadex C-50. The enzyme showed only one band on polyacrylamide gel electrophoresis and had a specific activity of 5330 +/- 80 units/mg of protein.  相似文献   

19.
Spin-label method was applied to the studies of conformation properties of pancreatic lipase. Spin-labelled derivatives of the enzyme in SH- and NH2-groups were obtained. ESR-spectra of both samples belong to the immobilized type, in the first case the ESR-spectrum corresponding to strong immobilization of the spin-label, and in the second--to the average one. In both cases the rotation correlation time of the enzyme molecule was measured. The time proved the same independent of the site of the label attachment; it corresponded to the rotation of macromolecule with molecular weight 50000. This fact points to the absence of both intramolecular flexibility of the enzyme molecule and of the association of lipase molecules in solution. It has been shown that introduction of substrates and inhibitors of the enzyme and the interface as well, induces no changes in the ESR spectra, which points to the absence of local conformation changes of protein near the spin-labels introduced.  相似文献   

20.
Sayari A  Mejdoub H  Gargouri Y 《Biochimie》2000,82(2):153-159
Turkey pancreatic lipase (TPL) was purified from delipidated pancreases. Pure TPL (glycerol ester hydrolase, EC 3.1.1.3) was obtained after ammonium sulfate fractionation, Sephacryl S-200 gel filtration, anion exchange chromatography (DEAE-Sepharose) and size exclusion column using high performance liquid chromatography system (HPLC). The pure lipase, which is not a glycoprotein, was presented as a monomer having a molecular mass of about 45 kDa. The lipase activity was maximal at pH 8.5 and 37 degrees C. TPL hydrolyses the long chains triacylglycerols more efficiently than the short ones. A specific activity of 4300 U/mg was measured on triolein as substrate at 37 degrees C and at pH 8.5 in the presence of colipase and 4 mM NaTDC. This enzyme presents the interfacial activation when using tripropionin as substrate. TPL was inactivated when the enzyme was incubated at 65 degrees C or at pH less than 5. Natural detergent (NaTDC), synthetic detergent (Tween-20) or amphipatic protein (beta-lactoglobulin A) act as potent inhibitors of TPL activity. To restore the lipase activity inhibited by NaTDC, colipase should be added to the hydrolysis system. When lipase is inhibited by synthetic detergent or protein, simultaneous addition of colipase and NaTDC was required to restore the TPL activity. The first 22 N-terminal amino acid residues were sequenced. This sequence was similar to those of mammal's pancreatic lipases. The biochemical properties of pancreatic lipase isolated from bird are similar to those of mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号